CzECH TECHNICAL UNIVERSITY INPRAGUE
FACULTY OF INFORMATION TECHNOLOGY

ASSIGNMENT OF BACHELOR’S THESIS

Title: Side channel analysis of cryptographic algorithms implementations
Student: Bc. Luka$ Mazur

Supervisor: Dr.-Ing. Martin Novotny

Study Programme: Informatics

Study Branch: Computer engineering

Department: Department of Digital Design

Validity: Until the end of summer semester 2016/17

Instructions

1. Get familiar with methods of side-channel analysis of cryptographic algorithms implementations. Focus
mainly on Differential Power Analysis (DPA).

2. Learn how to use DPA for implementations in SmartCards.

3. Consequently, explore viability of DPA to FPGA implementations of cryptographic algorithms.

4. Based on the consultation with a supervisor, select suitable variants of implementations.

5. Explore resistance of these variants against DPA.

References

Will be provided by the supervisor.

L.S.

doc. Ing. Hana Kubéatova, CSc. prof. Ing. Pavel Tvrdik, CSc.
Head of Department Dean

Prague December 6, 2015

CzECH TECHNICAL UNIVERSITY IN PRAGUE

FAcULTY OF INFORMATION TECHNOLOGY /

DEPARTMENT OF DIGITAL DESIGN

Bachelor’s thesis

Side channel analysis of cryptographic
algorithms implementations

Be. Lukdas Mazur

Supervisor: Dr.-Ing. Martin Novotny

8th January 2017

Acknowledgements

At this point I want to thank to my supervisor Dr.-Ing. Martin Novotny for
all his comments and remarks during writing the thesis, and for the help with
measurement. [want to thank to Ing. Jifi Bucek for the help with meas-
urement. [also want to thank to Priv.-Doz. Amir Moradi for consultations
on proper oscilloscope setup. I want to thank to Jan Severyn for valuable
collaboration while working on this thesis.

Declaration

I hereby declare that the presented thesis is my own work and that I have
cited all sources of information in accordance with the Guideline for adhering
to ethical principles when elaborating an academic final thesis.

I acknowledge that my thesis is subject to the rights and obligations stip-
ulated by the Act No. 121/2000 Coll., the Copyright Act, as amended, in
particular that the Czech Technical University in Prague has the right to con-
clude a license agreement on the utilization of this thesis as school work under
the provisions of Article 60(1) of the Act.

In Prague on 8th January 2017 ..

Czech Technical University in Prague

Faculty of Information Technology

(© 2017 Lukas Mazur. All rights reserved.

This thesis is school work as defined by Copyright Act of the Czech Republic.
It has been submitted at Czech Technical University in Prague, Faculty of
Information Technology. The thesis is protected by the Copyright Act and its
usage without author’s permission is prohibited (with exceptions defined by the
Copyright Act).

Citation of this thesis

Mazur, Lukas. Side channel analysis of cryptographic algorithms implement-
ations. Bachelor’s thesis. Czech Technical University in Prague, Faculty of
Information Technology, 2017.

Abstrakt

V bakalarské praci byly prozkoumany moznosti rozdilové odbérové analyzy

(DPA) na programovatelna hradlové pole (FPGA). V rdamci prace byl modi-

fikovan program pro méfeni proudové spotieby, vytvoreny skripty pro provadéni
DPA a vytvoreny riizné implementace algoritmu AES na FPGA. Vyvinuté

skripty a programy pro DPA byly ovéfeny proti implementaci AES na ¢ipové

karté. Poté, co tyto programy uspésné prolomily implementaci na cipové

karté, pristoupili jsme k aplikaci DPA proti implementaci AES na desce s

FPGA. DPA proti FPGA byla provedena v Sesti raznych konfiguracich. Tyto

konfigurace se lisily v implementaci AES na FPGA, v konfiguraci desky, v

nastaveni osciloskopu a v metodé utoku. Byly nalezeny konfigurace, které

byly tspésné prolomeny. Bylo zjisténo, ze nastaveni osciloskopu a mériciho

prostiedi mé vyznamny dopad na proveditelnost DPA na FPGA. Implementace
je méné dulezita pro Uspéch utoku. Nejdilezitejsi aspekt implementace je

hodinova frekvence. Také bylo zjiSténo, ze pouziti riznych zdroju proudu a

odebrani kondenzatori na FPGA desce méa vyznamny dopad na proveditelnost

DPA.

Klicova slova Rozdilovd odbérova analyza, Gtoky postrannimi kanaly, Ad-
vanced Encryption Standard, FPGA, ¢ipova karta, korela¢ni analyza

ix

Abstract

We explored the possibilities of the Differential Power Analysis (DPA) on the
Field Programmable Gate Array (FPGA). We have modified the application
for measuring a power consumption, created scripts for performing DPA, and
created different implementations of AES algorithm for FPGA. Developed
scripts and applications for DPA were verified against AES implementation
for smart cards. Once those applications successfully broke the implementa-
tion for smart cards, we continued with the application of DPA against AES
implementation for an FPGA board. DPA against FPGA was performed in
six different configurations. Those configurations differed in AES implement-
ation for FPGA, in board configuration, in oscilloscope setup, and in method
of the attack. We found variants that could be successfully broken. We found
out that an oscilloscope and measuring environment setups has major impact
on the feasibility of the DPA on FPGA. The implementation is less important
for the success of the attack. The most important aspect of the implement-
ation was the clock frequency. We have also found out that using different
power sources and removing capacitors on the FPGA board have significant
impact on the feasibility of the DPA.

Keywords Differential Power Analysis, Side Channel Attacks, Advanced
Encryption Standard, FPGA, Smart Card, Correlation Analysis

Contents

Introduction 1
1 Background 3
1.1 Advanced Encryption Standard 3
1.2 Side Channel Attacks 4
2 Analysis 7
2.1 Encryption Algorithm 7
2.2 Methods of the Attack 9
2.3 FPGA Board 10
3 Implementation 13
3.1 SC Power Measurement 14
3.2 KeyRecovery 15
3.3 AES for Smart Card 16
3.4 AES for FPGA 17
3.5 AES.CLK e 28
3.6 AESSUBBYTES 28
3.7 AESBYTES e 32
3.8 AESKEY e 34
4 Testing 37
4.1 Testing Tools Lo 38
4.2 Verification 38
4.3 Validation 39
5 Mounting the DPA Attack on AES Implementations 41
5.1 Smart Card 42
52 FPGA e 43
5.3 Summary . . o.o.o. ..o e e 58

X1

6 Future Work
Conclusion
Bibliography

A Acronyms

B Contents of Enclosed DVDs

xii

61

63

65

69

71

1.1

2.1
2.2
2.3

3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.8
3.9

3.10

3.11
3.12
3.13

5.1
5.2
5.3
5.4

9.5

List of Figures

Possible methods of DPA against AES128

Different implementation variants of AES128
Digilent Basys 2o
Spartan 3E Starter Board

AES128 block diagram oL
AES128 CONTROLLER state diagram
AES128 BLOCK block diagram
AES128 BLOCK_CONTROLLER state diagram
AES128 BLOCK_DATAPATH block diagram
Variant AES_CLK: AES128 CONTROLLER state diagram
Variant AES_CLK: AES128 block diagram change
Variant AES_SUBBYTES: AES128 BLOCK block diagram
Variant AES_SUBBYTES: AES128 BLOCK_DATAPATH block dia-
STATN .« o v v o e e e e e e e e
Variant AES_ SUBBYTES: AES128 BLOCK_CONTROLLER state

diagram
Variant AES_ BYTES: AES128 BLOCK block diagram
Variant AES_KEY: AES128 block diagram
Variant AES_ KEY: AES128 CONTROLLER state diagram

Measurement setup for smart card
Power trace. Configuration section 5.1 (smart card)
Measurement setup for FPGA with differential probe
Power trace. Configuration: subsection 5.2.1 (AES_CLK, capacit-

ors present, switched-mode power supply, differential probe)
Traces of correlation coefficients (correct key in red), samples 38,000
44,000. Configuration: subsection 5.2.1 (AES_CLK, capacitors

present, switched-mode power supply, differential probe)

xiii

31

33
33
34
35

42
43
44

45

46

5.6

5.7

5.8

5.9

5.10

5.11

5.12

5.13

5.14

5.15

5.16

5.17

5.18

5.19

5.20

FPGA board powered by accumulators, which are connected through

stabilizers 47
Power trace. Configuration: subsection 5.2.2 (AES_SUBBYTES,
capacitors present, accumulators, differential probe) 47

Traces of correlation coefficients (correct key in red). Configura-

tion: subsection 5.2.2 (AES_SUBBYTES, capacitors present, ac-
cumulators, differential probe)00 L. 48
Power trace, samples 50,000-100,000. Configuration: subsection 5.2.3
(AES_KEY, capacitors removed, accumulators, differential probe,
1Ohmresistor) 49

Power trace, samples 50,000-100,000. Configuration: subsection 5.2.3
(AES_KEY, capacitors removed, accumulators, differential probe,
100hm resistor) 49

FPGA board powered by accumulators, which are connected through
stabilizers. The board is connected to the oscilloscope through
preamplifier. 51
Measurement setup for FPGA with AC preamplifier 52
Power trace. Configuration: subsection 5.2.4 (AES_CLK, capacit-

ors removed, accumulators, AC preamplifier) 53

Traces of correlation coefficients (correct key in red), samples 10,000
17,000, 5,000 traces. Configuration: subsection 5.2.4 (AES_CLK,
capacitors removed, accumulators, AC preamplifier) 54
Traces of correlation coefficients for different number of power
traces (correct key in red), sample 15,045. Configuration: sub-
section 5.2.4 (AES_CLK, capacitors removed, accumulators, AC

preamplifier) 54
Power trace. Configuration: subsection 5.2.5 (AES_CLK, capacit-

ors removed, switched-mode power supply, AC preamplifier) 55
Traces of correlation coefficients (correct key in red), samples 13,000

16,000, 30,000 traces, 1%* byte. Configuration: subsection 5.2.5
(AES_CLK, capacitors removed, switched-mode power supply, AC
preamplifier) oo oo Lo 56
Traces of correlation coefficients (correct key in red), samples 13,000
- 16,000, 30,000 traces, 7** byte. Configuration: subsection 5.2.5
(AES_CLK, capacitors removed, switched-mode power supply, AC
preamplifier) oo oo oo o 56
Traces of correlation coefficients (correct key in red, key hypothesis
with lowest correlation coefficient in blue), samples 13,000-16,000,
5,000 traces. Configuration: subsection 5.2.5 (AES_CLK, capacit-
ors removed, switched-mode power supply, AC preamplifier) 57
Power trace. Configuration: subsection 5.2.6 (AES_CLK, capacit-
ors present, accumulators, AC preamplifier) 58

Xiv

5.21 Traces of correlation coefficients (correct key in red), samples 13,000~
16,000, 30,000 traces. Configuration: subsection 5.2.6 (AES_CLK,
capacitors present, accumulators, AC preamplifier)

5.22 Traces of correlation coefficients (correct key in red, key hypothesis
with lowest correlation coefficient in blue), samples 10,000-16,000,
5,000 traces. Configuration: subsection 5.2.6 (AES_CLK, capacit-
ors present, accumulators, AC preamplifier)

XV

2.1
2.2

3.1
3.2

4.1

5.1
5.2
5.3
5.4
9.5
5.6

5.7
5.8
5.9

List of Tables

Comparison of different implementation variants
Overview of intended attacks

Overview of AES FPGA implementations
Overview of clock cycles needed for encryption in each variant

Overview of performed tests

Measurement on smart card
Summary of performed measurements
Measurement AES_CLK, differential probe
Measurement AES_SUBYTES, accumulators, differential probe . .
Measurement AES_SUBYTES, accumulators, differential probe . .
Measurement AES_CLK, no capacitors, accumulators, AC preamp-

liffier
Measurement AES_CLK, no capacitors, AC preamplifier
Measurement AES_CLK, accumulators, AC preamplifier
DPA summary

xvii

37

42
44
45
46
48

Introduction

Cryptography is a major part of computer security and data security in gen-
eral. Substantial effort is being put into developing more secure and faster
cipher algorithms, and into breaking them. Many governments have their
own standards and requirements for cryptographic algorithms usually based
on mathematical findings and theories that make them secure. But even the
most mathematically secure algorithms can be broken in a matter of hours or
minutes by side channel attacks. Side channel attacks do not exploit weak-
nesses in the mathematical model behind the cryptographic algorithm, but
the implementation of the algorithm is targeted instead. Even a very secure
cipher algorithm implementation can be broken if implemented incorrectly.

The volume of digital data in the world is growing rapidly and the demand
for its encryption is growing as well. Cryptography has its use not only in pro-
tecting government secrets but also in protecting people’s lives. Cryptography
makes it impossible! for an intruder to intercept a remote communication in
mission-critical systems such as planes or automated urban metro subway sys-
tems. By researching possible attacks, the researches can find weak spots in
encryption systems and find effective ways of securing them.

Traditionally, research was mostly done in the ciphers themselves, and not
theirs implementations. This has changed since Paul Kocher et al. presented
their article in 1999 [18]. They showed that it is possible to get the secret key
from cryptographic device by looking at its power consumption. An intensive
research in the field of Differential Power Analysis (DPA) has begun and it
is sill ongoing. Different attacks and countermeasures against those attacks
have been introduced.

The aim of this thesis is to get familiar with side channel attacks and espe-
cially with the DPA. The DPA will be applied to the smart card to properly
learn the method of performing it. After that the viability and resistance
of different implementations of cryptographic system in Field Programmable

L At least we hope it is impossible

INTRODUCTION

Gate Array (FPGA) will be explored.

The structure of this thesis is as follows: In the first chapter we offer a
brief introduction into the topic. In the second chapter we analyse several
variants of the implementation of the cryptographic system, we discuss the
ways of implementation of the side channel attack, and we make a selection of
suitable FPGA board with respect to the feasibility of the attack. In the third
chapter we describe the design of different implementations of cryptographic
systems for smart card and FPGA, the implementation of scripts used for the
attack, and modification of the application for measurement. We performed
both the verification and validation testing. The tests and their results are
described in the fourth chapter. We present results of different attacks on
different configurations of the cryptographic system in the fifth chapter. In
the sixth chapter we propose a few topics that could be researched in the
future. In last chapter we make conclusions from our findings.

CHAPTER].

Background

This chapter briefly introduces the reader into the topic. After the consulta-
tion with thesis supervisor we have selected Advanced Encryption Standard
(AES) as a cryptographic system that will be used in this thesis. The chapter
begins by a discussion of the AES selection process and short description of
the AES algorithm in section 1.1. The side channel attacks are explained in
section 1.2.

1.1 Advanced Encryption Standard

The AES predecessor, Data Encryption Standard (DES), was often criticized
because of its short key being only 56 bits long. DES was broken by brute-force
attack for the first time in 1997 by a cluster of thousands personal computers
[16]. It became apparent that a new encryption standard was needed. In the
same year, National Institute of Standards and Technology (NIST) announced
that DES successor would be called AES [24]. There was a call for submissions
of new algorithms a few months later [25]. The algorithm was required to
have a block size of 128 bits, and to support 128, 192 and 256 bit keys. The
cipher Rijndael won the competition and has been standardized as Federal
Information Processing Standards (FIPS) 197 [26] in 2001.

The AES processes the block in rounds. The number of rounds is 10, 12,
or 14 for 128, 192, or 256 bit key respectively. The algorithm performs 4
transformations in each round:

e SubBytes—non-linear byte substitution according to a predefined table

e ShiftRows—exchange of positions of some bytes

e MixColumns—combination of multiple bytes, this transformation is skipped

in the last round

¢ AddRoundKey—=xoring of round key and cipher state

3

1. BACKGROUND

A different round key is used for each round. Round keys are derived from
the original key by the mechanism called Key Schedule or Key Expansion. A
detailed explanation of the cipher is provided in [28] or [17].

A dedicated hardware for breaking DES by a brute force attack, COPA-
COBANA, can break the cipher in 9 days on average [20]. Later, a new device,
RIVYERA, was created. It can break DES in 1 day on average [31]. Break-
ing AES with 128 bit key by a brute-force attack on a device with the same
computational power as computational power of RIVYERA would take ap-
proximately 13% 108 years. The brute force attack against AES is not feasible
with state-of-the-art hardware.

Related key attacks against AES algorithm are known. The complexity of
breaking AES192 and AES256 can be reduced to 2'76 and 2995 respectively
[12]. The 9 round version of AES256 can be broken in time 239, and 10 round
version in time 24° [11].

1.2 Side Channel Attacks

According to [28], the cryptanalysis can be divided into 3 types:

e (Classical cryptanalysis—it involves attacks that exploit the internal struc-
ture of the cipher or brute force attacks. It tries to find some weak spot
in mathematical model behind the cipher, in its properties, or in its
design.

e Social engineering attacks—they usually involve humans, and the aim of
those techniques is to get the secret key directly from humans. Members
of this group are techniques such as bribing, blackmailing, phishing, or
tricking.

e Implementation attacks—side channel attacks can be used to reveal the
key from information leaks caused by the implementation. In this thesis
we focus on one type of such attack.

Attacks which belong to implementation attacks include power analysis, mag-
netic field analysis, timing analysis, or temperature analysis.

In this thesis we focus on side channel attacks, namely the method called
Differential Power Analysis (DPA). As has been said in [30] ”"The efficiency
of DPA attacks is much greater than the efficiency of differential or linear
cryptanalysis”. Below we bring brief introduction into this method.

1.2.1 Differential Power Analysis

The detailed explanation of DPA can be seen in [21] or [19]. We present a brief
description here. The power consumption depends on the data being processed

4

1.2. Side Channel Attacks

[15]. The key can be obtained by analysis of the power traces captured during
the encryption.

During the attack we are using the device and capturing the power traces.
We are sending different plaintexts and storing the traces of the power con-
sumption.

The key recovery process starts by creating a key hypothesis. We estimate
the consumption for different values of each byte of the key (0-255). Those
estimates are then correlated with obtained traces and the key hypothesis with
highest correlation coefficient is considered to be a correct key.

Different models can be used during the creation of the key hypothesis.
There are two orthogonal parts of the model which can be combined, the
consumption model, and the round (just in case of block ciphers). The com-
bination produces four different possible attack variants.

Consumption model

During the creation of a key hypothesis we try to estimate changes in the
power consumption. Two models are commonly used: Hamming weight and
Hamming distance.

Hamming weight By Hamming weight we can measure a current state of
the system (register). It gives us the number of ones in a register. Ham-
ming weight is a static model in its nature. It measures only the current
state and not the changes that preceded the current state.

Hamming distance Hamming distance gives the difference between two val-
ues. If those two values represent different time points, the distance can
actually measure the change in time of one value. Hamming distance is
useful in cases when a small change in register (for instance the change of
just one bit) can cause a chain of changes in the following combinational
logic. Each of these changes has an impact on the overall consumption.
By using distance we can more closely approximate the changes and
their power consumption in the model.

Round (in a block cipher)

Block ciphers are typically composed of multiple rounds. There is usually a
sequence of different types of operations in each round. Typically those types
of operations include permutation, substitution, diffusion, and key addition.
When applying DPA on a block cipher, we focus on the inner state of cipher
in suitable moment either in first round or last round. If we are attacking
the first round, we estimate the cipher state according to the plaintext and
we guess first round key. If we are attacking the last round we estimate the
cipher state according to the ciphertext and we guess last round key.

1. BACKGROUND

Substitution, which is a non-linear operation, is required to be present
between the inner state and plaintext/ciphertext. The addition of round key
needs to be performed before the non-linear operation, and between the inner
state and the plaintext/the ciphertext. Permutation and other linear opera-
tions can be present between the key addition and substitution. The diagram
of both methods (for AES) is shown in Figure 1.1.

Last round key hypothesis

First d key hypothesi L .
It round ey nypothesis (requires inverse transformations)

Beginning Round 9
________ AddRoundKey
(key addition)

Y y .
SubBytes SubBytes
(substitution) (substitution)

. ‘ Y
ShlftRU"YS Round 10 ShiftRows
(permutation) (permutation)
Y Round 1 !
Mgff(;ml_lmm AddRoundKey

(di lislon) (key addition)
AddRoundKey
(key addition) /

Figure 1.1: Possible methods of DPA against AES128
Combination of different consumption models and rounds leads to 4 pos-
sible attacks:
e Hamming weight and first round
e Hamming weight and last round
e Hamming distance and first round

e Hamming distance and last round

CHAPTER 2

Analysis

This chapter contains the analysis of the structure of the implementation in
section 2.1. Then it discusses different methods of the attack and summar-
izes the methods which will be used (see section 2.2). The chapter ends by
section 2.3 which contains the analysis and selection of the FPGA board used
for the implementation.

2.1 Encryption Algorithm

The DPA can be used against various encryption algorithms because it does
not target the underlying mathematical model of the cipher but it targets
its implementation instead. With regard to the previous statement we were
free to choose whatever cipher we wanted. As has been state above, after
consultation with thesis supervisor, we decided to use the AES encryption
algorithm with 128 bit key, as it is widely used and secure algorithm. Many
resources on AES are available. Because of that it was fairly easy to get
familiar with inner function of AES.

Different approaches to the structure of the implementation exist. We were
considering three options. Expected impact of these options on the feasibility
of DPA is described below. The scheme of all three variants can be seen
in Figure 2.1. Detailed description of different designs is in [29]. Below we
introduce three design approaches we considered for designing AES. Possible
options are summarized in Table 2.1.

Combinational logic All the rounds would be performed in one clock cycle
in this design. DPA usually targets just one round, but this design
would perform all the rounds and transformations in one clock cycle.
We suppose that it could introduce a lot of noise to the captured traces.

Iterative design Just one round of one block would be encrypted per clock
cycle. Encryption of one block of plaintext takes 10 clock cycles plus

7

2. ANALYSIS

Combinational

Input Round 1 (CL) Round 2 (CL) “ e Round 10 (CL) Output

Figure 2.1: Different implementation variants of AES128 (CL—combinatorial
logic, R—register)

Pipelined

Input

Round 1 (CL) Round 2 (CL)

overhead. It gives us the opportunity to measure the consumption more
precisely without the noise caused by other rounds.

Pipelined architecture The encryption is separated into multi-stage pipeline.
One round of multiple blocks? is being processed in one clock cycle. We
expect this option to be more noisy than previous one because data from
different blocks are influencing the consumption.

Per clock cycle

Structure Rounds of each block | Blocks
Combinational 10 1

Iterative 1 1

Pipelined 1 10

Table 2.1: Comparison of different implementation variants

We have decided to use the iterative implementation because we expect
it to be easier to break than the others. Only one round and one encryption
are performed at a time. Other versions process more data at one time and
thus we expect them to be harder to break because there is more information
involved in the encryption in one clock cycle. Moreover we have decided to
use iterative variant because it consumes less chip area than other variants.?

2Number of processed blocks depends on number of stages of pipeline

3Lately, we found out that using iterative variant was clever decision because iterative
variant uses around 30% of chip area. Other variants would be too large to fit in the selected
chip.

8

2.2. Methods of the Attack

2.2 Methods of the Attack

We discuss the suitability of different methods of the attacks in this section.
A summary of attacks which will be performed is placed at the end of the
section.

2.2.1 Consumption Model

Two consumption models are commonly used (see section 1.2.1). We expect
each model to be effective against different kind of cryptographic devices.

We assume the Hamming weight to be more effective for smart cards
(which is actually a single chip computer). Our assumption is based on fol-
lowing hypothesis. Changes in power consumption occurs when the data on
the internal bus inside the processor changes. At this time the bus needs to
charge or discharge depending on the data. Thus the consumption is linked
to the current state of the bus. Hamming weight should be relevant model
in this case because we are guessing the content of data on the internal bus.
The fact that Hamming weight gives better results than Hamming distance
on smart cards was confirmed by Tillich and Herbst [33].

We will use both Hamming weight and Hamming distance for FPGA, but
we expect that Hamming distance will be more efficient because the number of
zeroes and ones in register is not relevant to the overall consumption. Changes
of values are more relevant in the case of FPGA. By Hamming distance we
can estimate the number of changes that happened in one clock cycle.

2.2.2 Round

Possible rounds that can be a subject of the attack are described in sec-
tion 1.2.1. We decided to mount the attack both against the first round, and
against the last round. The description of the creation of the key hypothesis
is below.

First round Creation of key hypothesis is simpler for the first round. It
requires just 2 steps.

1. AddRoundKey
2. SubBytes

The key hypothesis is finished at this point.

Last round In the case of the last round the transformations are applied in
the reverse order. The process of creating key hypothesis begins with
the ciphertext (the final value of the state register) and goes backwards
through the last round. This attack requires using the inverses of all the
transformations (except the AddRoundKey).

2. ANALYSIS

1. AddRoundKey*
2. Inverse ShiftRows

3. Inverse SubBytes

The order of SubBytes and ShiftRows is not important. ShiftRows
just changes position of a byte. I could perform the SubBytes before
ShiftRows in a DPA if it would lead to easier implementation.

2.2.3 Intended Attacks

We have decided to use Hamming weight against the first round in case of
smart card. This is a proven method and our primary aim was to use smart
cards to get familiar with the DPA. We have made a decision to test both
Hamming weight against the first round, and Hamming distance against the
last round on FPGA. We want to start with Hamming weight and first round
because this method will be already developed for the smart card. If un-
successful, we will switch to the Hamming distance and last round because
we expect better result for this DPA parameters. The summary of intended
attacks is provided in Table 2.2.

First round Last round
Hamming weight | Smart card, FPGA
Hamming distance FPGA

Table 2.2: Overview of intended attacks

2.3 FPGA Board

This section describes the analysis of possible FPGA boards. At first we
identified a set of requirements that the board has to satisfy:

e Availability of some communication channel (we prefer the serial line as
a communication mean)

e Ability to measure the change of the current
e Availability in the university hardware lab

e Possibility to connect to our own power supply

“The inverse transformation for AddRoundKey is not needed because it is same as non-
inversed one

10

2.3. FPGA Board

2.3.1 Suitable boards

We were considering two boards, Digilent Basys 2 and Digilent Spartan 3E
Starter Board. We found out that the Spartan 3E Starter Board satisfies all
the feature requirements. There was no need to evaluate other boards because
it was a very good match.

Digilent Basys 2

Figure 2.2: Digilent Basys 2, source: Digilent Inc.?

This is an entry level board by Digilent. It has a Spartan 3E-100 core and a
wide range of peripherals such as VGA port or PS/2 connector. Unfortunately
it is missing the serial port. Moreover the FPGA core is not large enough
for the design. We verified this fact later during the development. If we
targeted the core in Basys 2 in the development environment, the synthesis
failed because the core was not big enough. But, we didn’t know this fact at
the time when we were selecting the board. The technical specification can
be found in the reference manual [8].

Spartan 3E Starter Board

This is a Spartan 3E development board by Digilent. It features the Spartan
3E-500 core. It has 5 times more logic gates in comparison to the core placed
on Basys 2. According to the data sheet [6] it has all the required features.

® Available online at https://reference.digilentinc.com/_media/reference/programmable-
logic/basys-2/basys2-0.png [cit. 2016-11-21]

6 Available online at http://cdn6.bigcommerce.com/s-
Tgavg/products/110/images/3604/S3E_top_-600--14188.1449786819.1280.1280.png [cit.
2016-11-21]

11

2. ANALYSIS

Figure 2.3: Spartan 3E Starter Board, source: Digilent Inc.5

We identified a spot on the board suitable for placing the oscilloscope
probe. It is the jumper JP7 located on the 1.2V power line between voltage
regulator and the core. We have also identified spots for connecting our own
power supply bypassing the original one. We could use the JP7 jumper (the
same as for measurement) for connecting 1.2V source and JP6 jumper for
connecting the 2.5V supply (see Schematic Sheet 5 and Schematic Sheet 9 in
User Guide [6]). The 3.3V source could be connected to any peripheral VCC
pin and GND pin.

12

CHAPTER 3

Implementation

This chapter describes all the designs and other applications that we made or
modified as a part of this thesis.

We have modified the existing application SC Power Measurement which
is the application used for communication with the oscilloscope and automatic
measurement. It was originally created by Ing. Jiri Bucek and Ing. Petr Vy-
leta for teaching DPA in the course MI-BHW [4] that is taught at Faculty
of Information Technology (FIT) of Czech Technical University (CTU) (sec-
tion 3.1).

We have created following applications and designs:

e The application used for the key recovery. It is used for computing the
correct key and obtaining correlation matrices (section 3.2).

e The AES algorithm. We have developed 6 different AES128 implement-
ations. These implementations differ in programming language they are
written in and in their inner structure. The resistance against DPA
of these implementations was tested. Following implementations were
made:

— AES for smart card (section 3.3)
— AES for FPGA (section 3.4), with following modifications:

« Lower clock rate (section 3.5)
* Register placed after the subbytes operation (section 3.6)

x Fach byte substitution is written into register in different clock
cycle (section 3.7)

x The key is not harcoded but there is a register for key and it
is transmitted over serial line (section 3.8)

13

3. IMPLEMENTATION

3.1 SC Power Measurement

We used the SC Power Measurement from the course MI-BHW [4] for per-
forming the measurements. It is written in C++ programming language. It
communicates with Agilent oscilloscope via VISA drivers. It generates random
plaintexts, sends them to the device under attack, and waits for the response.
It downloads power traces that were captured during the encryption by the
oscilloscope. It is also capable of sending the same data repeatedly which is
useful for initial setting of measurement setup and environment.
It outputs 4 files containing data used for encryption and power traces.

traces.bin Binary file containing power traces. Each sample has size 1 byte.

plaintext.txt Text file that contains the plaintexts. Each line has one block
of plaintext. The bytes of plaintext are written hexadecimally and sep-
arated by space.

ciphertext.txt File containing the ciphertexts. It has the same format as
plaintext.txt.

traceLength.txt Text file containing the number of samples per trace.

There is no information about the number of traces but it can be computed
from the size of the file traces.bin and the number of samples per trace, or by
counting the number of plaintexts/ciphertexts.

The application was originally developed to be used with smart cards.
Together with Jan Severyn who is also performing a DPA in his bachelor
thesis we added a support for FPGAs. Moreover there is a bug in VISA
drivers causing the SC Power Measurement to crash randomly. We performed
a few changes in the application to make it more resistant against the failure.
This is a list of all changes that we made:

e We added support for serial communication. The parameters of the
communication such as baud rate, number of parity bits or port are
hard-coded in file sources/main.cpp. It uses 115,200 bauds, 1 start bit,
1 stop bit and no parity bits. It uses following Windows application
programming interface (API) functions:

— CreateFile(...)
— WriteF'ile(...)
— ReadFile(...)
e In the original application, all the power traces were saved at the end of
measurement. If the application crashed during measurement, no traces
were kept at all. We changed the way of storing traces. Each trace is

saved after each single measurement and not at the end. This preserves
the obtained traces even in case of crash.

14

3.2. Key Recovery

e The random generator that generates the plaintexts was originally seeded
by zero. We changed the seed to the current timestamp. This change
allowed us to see different plaintexts in each run of the application.

o We added various logs to the standard output. This is useful for tracking
the progress during measurement.

e We added the possibility to prepend each plaintext by value OxFF. This
value at the beginning is required by the implementation with the re-
gister for key which can be found in section 3.8. The SC Power Meas-
urement exists in two versions. One version prepends the byte at the
beginning and the other does not.

3.2 Key Recovery

We have created a script for obtaining the correct key in Wolfram Mathem-
atica. It uses files output from SC Power Measurement. Loading traces was
optimized to use as low memory as possible. The loading procedure was taken
from the webpage of the course MI-BHW [4]. But even with this optimization
it run out of memory on machine with 8GB of RAM if I attempted to perform
the analysis with 100,000 traces and thousands of samples per trace. As it can
handle 1,000-2,000 samples per trace for 100,000 traces at most, the visual
inspection of captured data is necessary. Then we can use a subset of samples
that is located around the clock cycle which the operation was performed in.
There are ways of optimizing the computation (see section 6).

We have created two versions of the key recovery script. They differ in
the round that is being attacked and in the consumption model that is used.
They use methods proposed in subsection 2.2.3. It works on a byte basis and
the computation needs to be repeated for each byte of the key.

The script at first creates a key hypothesis. Key hypothesis is a matrix
with dimensions (number of traces, 256). Number 256 represents all possible
values that can be held by one byte of key”. First version attacks the first
round and uses Hamming weight. Pseudocode of first version can be seen in
Listing 3.1. Second version attacks the last round and uses Hamming distance.
Pseudocode of second version can be seen in Listing 3.2.

The script then loads traces into the matrix with dimensions (number of
traces, number of samples). Those two matrices are correlated producing a
resulting matrix with dimensions (number of samples, 256). The plot of correct
key hypothesis correlation coefficient is different from others. Thus, visual
inspection is necessary to find the key. The number of column subtracted
by one (indexes in Mathematica start from 1) is the value of correct key.
The number of row with highest value corresponds to the sample which the

"Provided one byte has 8 bits

15

3. IMPLEMENTATION

Listing 3.1: First round Hamming weight key hypothesis pseducode

for (i = 0; i < number_of_traces; i++)
for (j = 0; j < 256; j++)
tmp = bit_xor
(plaintexts [number_of_byte, i], j)
tmp = sbox (tmp)
tmp = to_binary (tmp)
key_hypothesis[i,j] = hamming weight (tmp)

Listing 3.2: Last round Hamming distance key hypothesis pseducode

for (i = 0; i < number_of_traces; i++)
for (j = 0; j < 256; j++)

tmp = bit_xor (
ciphertexts [number_of_byte, i], j)

before_sbox = inverse_sbox (tmp)

position = inverse_shift_rows(number_of_byte)

key_hypothesis[i,j] = hamming distance (
before_sbox ,
ciphertexts [number_of_byte, position])

operation took place in. Depending on the settings of the oscilloscope there
are usually more samples per one clock cycle of AES design.

3.3 AES for Smart Card

This is the first AES implementation that we made. It is written in C pro-
gramming language and it is intended for smart card. The primary aim of
this implementation was to get familiar with AES and DPA. The DPA against
smart cards was heavily researched and there are many available resources on
it.

The smart card we were using is controlled by Atmel AVR microcontroller
unit (MCU). It is an 8 bit MCU, all operations in the implementation are byte
oriented. It runs the AES in a for loop where each iteration is one round. All
the transformations are performed per byte. The S-Box is implemented as a
look-up table in program memory. Whole implementation is located in one
source file with one exported function. Its signature can be seen in listing 3.3.
For better readability the implementation is separated into multiple functions
but those functions are not exported. The arguments of function in Listing 3.3
are:

16

3.4. AES for FPGA

Listing 3.3: AES C implementation interface

void aesl128 block _encrypt (
const unsigned char *x plaintext ,
unsigned char *x ciphertext ,
const unsigned char x key)

plaintext The address of a buffer with plaintext. Its expected size is 16 bytes.

ciphertext The address of a buffer which is used for storing ciphertext. Its
expected size is 16 bytes.

key The address of a key. Because the function encrypts by 128 bit AES, the
size of a key is 16 bytes.

The source file is a part of simple operating system for smart cards called
BHW SOSSE. This system is used in the course MI-BHW [4] for teaching DPA
against smart cards.® The communication with this system is via application
protocol data unit (APDU).? The system supports 5 commands. Four of them
invoke example encryption and decryption algorithms in C and assembler. The
fifth actually does nothing. It is up to the students of MI-BHW course to add
a genuine implementation of AES here. We added our AES implementation
here and we used this system for performing a DPA on a smart card.

3.4 AES for FPGA

This is the first VHSIC Hardware Description Language (VHDL) implement-
ation of AES that we made. The other VHDL implementations are modific-
ations of this one. We subsequently modified this implementation to make
it easier to break. Summary of all FPGA implementations is provided in
Table 3.1.

The encryption in each of AES designs takes a different number of clock
cycles. The operation was subsequently divided among more and more clock
cycles. There is also a preparation before the encryption which takes one
clock cycle. The summary of clock cycles needed for the encryption is shown
in Table 3.2.

The top level entity is called AES128 and its interface is shown in listing
3.4. The following list presents a brief description of the AFES128 ports.

RS232_RXD A serial line receive signal connected to RXD pin (R7) of serial
line connector on the board.

81t was originally created by Matthias Bruestle at Ruhr-University Bochum
9A protocol for communication between a smart card and a reader

17

3. IMPLEMENTATION

Trigger S-Box
Frequency | pefore | S-Box | per clock | Key
Variant (kHz) start | register cycle register
AES 50,000 X X X X
AES_CLK 1,562.5 v X X X
AES_SUBBYTES 1,562.5 v v X X
AES BYTES 1,562.5 v v 4 X
AES KEY 1,562.5 v v v v
Table 3.1: Overview of AES FPGA implementations
Variant Initial preparation | One round | Total

AES 1 1 11

AES CLK 1 1 11

AES_SUBBYTES 1 2 21

AES BYTES 1 17 171

AES KEY 1 17 171

Table 3.2: Overview of clock cycles needed for encryption in each variant
(Total equals Initial preparation plus 10 times One round)

Listing 3.4: FPGA implementation top level entity interface
entity AES128 is

port (
RS232.RXD : in std_logic;
RST : in std_logic;
CLK : in std_logic;

RS232. TXD : out std_logic;
ENCRYPTING : out std_logic
);

end entity;

RST A reset connected to the South Button (FPGA pin K17). During testing
I have found out that the reset button needs to be pushed down after
loading the bitstream to the FPGA chip for the design to correctly
work. If the reset button is not pushed down the board returns incorrect
results.

CLK A clock signal connected to the oscillator with frequency 50 MHz (pin
C9).

RS232_TXD A serial line transmit signal connected to TXD pin (M14) of
serial line connector on the board.

18

3.4. AES for FPGA

ENCRYPTING A trigger signal connected to the pin 109 (FPGA pin D7).
In the initial design the trigger is in the state of logic one during the
encryption. The logic driving the trigger was changed in subsequent
designs. Trigger was put high for 16 cycles and then low for another
16 cycle before the actual encryption begun. Trigger signal helps to
properly locate the encryption on the oscilloscope during measurement.
We have found out that without trigger it is nearly impossible to locate
the time frame of the encryption.

All the functionality is encapsulated by this entity. It basically listens
to serial interface and waits till enough bytes, which is 16 in this case, were
received. After that, it starts the encryption and waits until the encryption is
done. Any data received over serial line during the encryption are discarded.
Once the encryption is completed, the encrypted block is sent back. Then it
waits for another block.

The block diagram of top level entity AES128 can be seen in Figure 3.1.
It consists of 5 entities:

AES128 CONTROLLER The finite state machine (FSM) that controls
receiving, encrypting and sending data.

AES128 BLOCK This entity performs the encryption.
RS232 A module that sends and receives data over serial line.
CIPHERTEXT REG Register for storing ciphertext.
PLAINTEXT REG Register for storing plaintext.

The AES128_BLOCK entity expects a 128 bit wide vector containing the
key. The constant key 0z00 0x11 0x22 0x33 0x44 0xb55 0x66 0x77 0288 0x99
0xAA 0xBB 0xCC 0xDD 0xEE 0xFF is being put to this vector. It is hard-
coded in the design and cannot be changed in runtime.

Below we bring description of all 5 blocks composing the top level entity
AES128.

3.4.1 AES128 CONTROLLER

The controller is realized as a Mealy FSM. It follows a typical structure with
3 processes. The first process is a combinatorial logic of transitions, second
process is a combinatorial logic of outputs and third process is a sequential
logic storing current state. The FSM state diagram can be seen in Figure 3.2

There is another auxiliary process. It serves as a counter of received
bytes from the serial line before the actual encryption takes place, and trans-
mitted bytes over serial line when the encryption is done. If the signal
INIT_COUNTER is put high the counter value is set to 16. The counter

19

3. IMPLEMENTATION

A
RS232_RXD RS232_TXD
UART_RX
> PLAINTEXT _REG
4
PLAINTEXT
RS232 PLAINTEXT
Constant
A

. Y KEY
I &
8 2 9 g AES128 BLOCK -

z
& = & z -
ml ml D| =
= = = | A
@ @ = a
g g § CIPHERTEXT

Y
LOAD_CIPHERTEXT
AES128 CONTROLLER CIPHERTEXT _REG
SEND_NEXT_BYTE
HAS_FINISHED
? ENCRYPT

ENCRYPTING

Figure 3.1: AES128 block diagram (each name of signal inside the entity ends
by INNER, this string was removed from the diagram because of simplicity)

20

3.4. AES for FPGA

DATA _AVAILABLE="0"

DATA _AVAILABLE="1" /
WAITING LOAD_PLAINTEXT
» FOR DECREASE_COUNTER

PLAINTEXT

INITIALIZING /INIT_COUNTER

IS_COUNTER_ZERO="1 IS_COUNTER_ZERO="0"

IS_COUNTER_ZERO="1"

SENDING

ENCRYPTING

ENCRYPTION_FINISHED="1" /
INIT_COUNTER
LOAD_CIPHERTEXT
TXD_READY="1"/
SEND_NEXT_BYTE
DECREASE_COUNTER

ENCRYPTION_FINISHED="0" /

IS_COUNTER_ZERO="0"/
- vy ENCRYPT

SEND_CIPHERTEXT

SENDING_

NEXT_BYTE '

TXD_READY="0"

Figure 3.2: AES128_ CONTROLLER state diagram

decrements by one if signal DECREASE_COUNTER is in the state of logic
one. If the counter value is zero the signal IS.COUNTER_ZERQO is pulled up.

The input of the controller are state signals from data paths. State trans-
itions in the finite state machine are driven by those state signals. State signals
are as follows:

DATA _AVAILABLE Active if new byte was received over serial line.

TXD READY Active if RS232 entity (see 3.4.2) is able to sent another
byte.

ENCRYPTION_FINISHED High if the encryption has finished.

The output of the controller are following control signals:

LOAD PLAINTEXT Stores next byte of plaintext in PLAINTEXT REG
(see 3.4.3).

LOAD_CIPHERTEXT Stores the output of AES128_BLOCK (see 3.4.4)
in CIPHERTEXT REG (see 3.4.3).

SEND_CIPHERTEXT Emits a signal to the RS232 converter (see 3.4.2)
to transmit another byte.

21

3. IMPLEMENTATION

SEND _NEXT BYTE Performs a shift by one byte to the left in CIPHER-
TEXT_REG (see 3.4.3).

ENCRYPT Starts the encryption.

3.4.2 RS232

This is the entity used for communication over serial line. At first we used an
implementation that we had created together with Jan Severyn as a part of
an assignment in the course BI-PNO [1]. However due to issues with correct
communication in our own implementation we switched to the implementation
provided by the supervisor. It can be downloaded from webpage of course MI-
BHW [4].

In comparison with original implementation we changed the baud rate from
9,600 bauds to 115,200 bauds. The entity is capable of sending and receiving
data over serial line. The RS232 unit takes the data from TXD_DATA if
TXD_STROBE is active and transmits them to the counter party. Once the
transmission is done, and RS232 converter is able to transfer another byte,
it pulls the signal TXD_READY high. The entity waits for data received
by serial connection. When it receives complete byte it makes the signal
RXD_STROBE active and the received data are present in vector RXD_DATA.
The data are valid as long as RXD_STROBE is in the state of logic one.

3.4.3 CIPHERTEXT_REG and PLAINTEXT REG

Shift registers for storing ciphertext or plaintext respectively. Both are simple
and similar to each other. Because of their simplicity they were not realized
as standalone entities but just as processes in the top level entity.

CIPHERTEXT _REG It stores the ciphertext from AES128_BLOCK (see
3.4.4) if the signal LOAD_CIPHERTEXT_INNER is active. The left
shift is performed if the signal SEND_NEXT_BYTE_INNER is ”17. The
most left byte is discarded and the register is padded by one byte with
value 0 on the right. The highest 8 bits of the output are connected to
the input of RS232 (see 3.4.2)

PLAINTEXT_REG The only purpose of this register is to store received
bytes until enough bytes were received. The encryption starts once 16
bytes were received.

3.4.4 AES128 BLOCK

This is the entity that performs the encryption by AES128 cipher. It encrypts
one block at a time. The interface of this entity is shown in Listing 3.5. If the
signal ENCRYPT is put high the entity stores the PLAINTEXT and KEY

into internal registers and the encryption begins. Once the encryption finishes

22

3.4. AES for FPGA

Listing 3.5: AES128_BLOCK interface
entity AES128 BLOCK is

port (
PLAINTEXT : in std_logic_vector (127 downto 0);
KEY : in std_logic_vector (127 downto 0);
ENCRYPT : in std_logic;
RESET : in std_logic;
CLK : in std_logic;
CIPHERTEXT : out std_logic_vector (127 downto 0);

HAS FINISHED : out std_logic
);
end entity AES128 BLOCK

FIRST_ROUND

LAST_ROUND o
AES128_BLOCK_CONTROLLER PERFORM_ROUND g AES128_BLOCK_DATAPATH

LOAD i
L S
ENCRYPT HAS_FINISHED PLAINTEXT CIPHERTEXT

Figure 3.3: AES128 BLOCK block diagram (each name of signal inside the
entity ends by INNER, this string was removed from the diagram because of
simplicity)

the signal HAS_FINISHED is active. If it is active the data in the vector
CIPHERTEXT are valid. It is active only for one clock cycle. Encryption of
new block can start when the encryption of previous block is done.

We have decided to use the implementation with iterative design. Our
original idea was to test different implementations but eventually we sticked
just with this one and we have not tested the pipelined one for instance. We
have found out during measurement that the determinant for success is mostly
the oscilloscope setup and not the implementation itself.

The entity performs one round per one clock cycle. At the end of the
round the data are stored to the register. Next round starts in next clock
cycle. The encryption takes 11 clock cycles in total. Ten round accounts for
10 cycles and one more cycle is used at the beginning of the encryption to
store original key and plaintext. This sums up to 11 clock cycles in total.

AES128_BLOCK is separated to two entities: data paths and the control-
ler (see Figure 3.3 for overall structure).

23

3. IMPLEMENTATION

ENCRYPT = “0"

ENCRYPT = “1" LOADING)!
LOAD

WAITING

IS_COUNTER_ZERO = “0"

PERFORMING_
FIRST_ROUND /
FIRST_ROUND
PERFORM_BLOCK
INIT_COUNTER

PERFORMING_
MIDDLE_ROUND /
PERFORM_BLOCK
DECREASE_COUNTER

-~

IS_COUNTER_ZERO = "1"

PERFORMING_
LAST_ROUND/
LAST_ROUND
PERFORM_BLOCK
HAS_FINISHED

Figure 3.4: AES128_ BLOCK_CONTROLLER state diagram

AES128 BLOCK_CONTROLLER

The controller of the AES128_BLOCK entity is realized as a Moore FSM.
As in the case of the top level entity (see subsection 3.4.1), the controller
consists of 3 processes. It waits till the signal ENCRYPT has a value of ”1”
and then it starts the encryption. It makes active signals FIRST_ROUND
and LAST_ROUND according to the round that is being processed. It holds
the PERFORM_ROUND high for the duration of the encryption. When the
encryption is over it sets the HAS_FINISHED to ”1”. The ciphertext is valid as
long as the signal HAS_FINISHED has value ”1”. The controller also contains
an internal counter for counting rounds. The diagram of the FSM can be seen
in Figure 3.4.

AES128 BLOCK_DATAPATH

This is the entity which the actual encryption takes place in. The block
diagram is shown in Figure 3.5. The entity has a register which is used for
storing the current cipher state. The current cipher state is written to the

24

3.4. AES for FPGA

register when the PERFORM_ROUND signal is active. If the signal LOAD is
active the plaintext is loaded to the register instead of the cipher state.

Round keys are not precomputed at the beginning but each successive
round key is computed in applicable round. There are two registers used
for the round key computation. The registers are ROUND_KEY_REG and
RCON_REG. The ROUND_KEY_REG register stores the current round key.
If the signal PERFORM_ROUND is high a new round key is stored. If the sig-
nal LOAD is active the original key is loaded to the register. The RCON_REG
is used for storing the round constant. It computes and stores new round con-
stant if the signal PERFORM_ROUND is active. If the signal LOAD is active
the value 0x01 is loaded to the register.

All the registers do not write anything if both PERFORM_ROUND and
LOAD are not active. If the signal FIRST_ROUND is active, the plaintext
is xored with the key. If the signal LAST_ROUND is high, the operation
MixColumns is omitted.

The transformations in AES are defined in terms of operations in GF(2%).
In the design we created functions used for computations in GF(2%). Those
functions are located in file AES_.COMMON.vhd. The summary of the func-
tions is below:

Addition Addition of two values in GF(28) is a bit xor of those values.

Multiplication by 2 When multiplying by 2 the value is shifted to the left
by one. If there is an overflow the result of shifting is xored with the
value Ox1B.

Multiplication by 3 The value is multiplied by 2 at first and then the ori-
ginal value is added to the result of the multiplication. It is based on
the identity 3a = 2a + a.

The AES consists of 4 transformations as described in section 1.1. The list
below describes realization of each of the blocks in the design.

AddRoundKey This is simply realized as a zor in VHDL language. The
vector with the key and the vector with the current cipher state are
xored.

SubBytes Subbytes are realized as a case statement. The substitution of
values is performed on a byte basis. We have found out during syn-
thesis that this operation takes the most FPGA chip area. We were
experimenting with different realizations but all ended up with similar
or worse results.

Shift Rows We change the order of bits. It is implemented as a vector as-
signment with different indexes.

25

3. IMPLEMENTATION

MixColumns This operation is based on matrix multiplication in GF(2%).
For the multiplication we use functions described earlier in this section.

26

3.4. AES for FPGA

(Lymiqepear
19)39([JO 9STIRID(PAJJIUIO SeM SNPATDS Aoy 10J o[qIsuodsal 0130] o1]}) wreIderp yooiq HIVAVIVA MDOTI 8ZISHYV :G'¢ om31]

t

934 1019

A
SNWNTOIXIW
A
SMOYL4IHS
A
S31A84NS
'Y

LIX3IINIVId

ADITANNOY

A ANNOY H_.Xu._.mm_._n__u

27

3. IMPLEMENTATION

Listing 3.6: Variant AES_CLK: top level entity interface
entity AESI28 is

port (
RS232. RXD : in std_logic;
RST : in std_logic;
CLK : in std_logic;
RS232. TXD : out std_logic;
TRIGGER : out std_logic

E

end entity;

3.5 AES CLK

We decided that a few modifications are needed. This section and following
ones contain the description of the modifications. Each modification has all
the features that the previous one plus the features described in particular
section. Based on suggestions of thesis supervisor we decided to lower the
clock rate and change the logic behind the trigger.

The previous implementation (section 3.4) was clocked on 50 MHz. In
modification AES_CLK, we divided the clock rate by a factor of 32 which
resulted to 1,562.5 MHz. It was the lowest clock rate the universal asyn-
chronous receiver/transmitter (UART) module was able to operate on (with
115,200 baud). We achieved the required behavior by adding a prescaler to
the top level entity. Prescaler is a 5 bit counter that increases by one with
every rising edge of the clock signal. The highest bit of prescaler is connected
to the clock inputs of other entities.

The second change that we made regards the trigger. The trigger was ori-
ginally active during whole encryption. Because of possible interferences that
could lower the quality of signal we changed the trigger so as the trigger is set
active for 16 cycles then there is a delay 16 cycles long and then the encryption
begins. The trigger reuses the counter used for counting bytes. This change
involved change of the AES128_.CONTROLLER (see subsection 3.4.1), and
change of one signal in the top level entity. Changes are shown in Figure 3.6,
and Figure 3.7 respectively. The output port ENCRYPTING of the top level
entity was renamed to TRIGGER because it has more accurate meaning (see
Listing 3.6).

3.6 AES SUBBYTES

We were not able to get power traces without the noise and break the imple-
mentation at this point. As was revealed later (see chapter 5), it was mostly

28

3.6. AES_SUBBYTES

DATA _AVAILABLE="0"
"
WAITING
FOR
PLAINTEXT

DATA_AVAILABLE="1" /
LOAD_PLAINTEXT
DECREASE_COUNTER

/ INIT_COUNTER

INITIALIZING

ot |

R
R
\S’CO:::: COUNTER IS_COUNTER_ZERO="0"

IS_COUNTER_ZERO = “0" /
DECREASE_COUNTER
TRIGGER

IS_COUNTER_ZERO = “0" /
DECREASE_COUNTER

SHOWING_
TRIGGER

IS_COUNTER_ZERO = “1" /
INIT_COUNTER

IS_COUNTER_ZERO = “1"/
INIT_COUNTER

IS_COUNTER_ZERO="1"

ENCRYPTION_FINISHED="1" /
INIT_COUNTER
LOAD_CIPHERTEXT

SENDING

TXD_READY="1"/ ENCRYPTION_FINISHED="0" /
SEND_NEXT_BYTE ENCRYPT

DECREASE_COUNTER

IS_COUNTER_ZERO="0"/
SEND_CIPHERTEXT

SENDING_
NEXT_BYTE

TXD_READY="0"

Figure 3.6: Variant AES_CLK: AES128 CONTROLLER state diagram

AES128 CONTROLLER AES128_BLOCK

AES128 CONTROLLER AES128_BLOCK

[ocwer]

ENCRYFT J TRIGGER

ENCRYPTING

v

Figure 3.7: Variant AES_CLK: AES128 block diagram change

29

3. IMPLEMENTATION

FIRST_ROUND

LAST_ROUND

PERFORM_ROUND

AES128_BLOCK_CONTROLLER LOAD AES128_BLOCK_DATAPATH
PERFORM_SUBBYTES

L o

ENCRYPT HAS_FINISHED PLAINTEXT CIPHERTEXT

Figure 3.8: Variant AES_ SUBBYTES: AES128 BLOCK block diagram (modi-
fications in red, each name of signal inside the entity ends by INNER, this
string was removed from the diagram because of simplicity)

caused by improper measurement setup. However, we were not originally fa-
miliar with this fact, and so we made further modifications to the design to
make the implementation easier to break.

The first idea was to separate the S-box from the rest of the computation.
We added the register after the S-box operation. This modification divided
one round into two clock cycles. The S-box result is written into S-box register
in first clock cycle and the result of all other operations is written in the second
clock cycle into cipher state register. A new signal PERFORM_SUBBYTES
was added between the data paths and the controller (see Figure 3.8). The res-
ult of S-box is written to the S-box register if signal PERFORM_SUBBYTES
is high (see Figure 3.9).

30

3.6. AES_SUBBYTES

(£y1TIqRpEaI 19339 JO 9SNEID(PIYIIWIO SeM A[NPITDS £y 10} J[qI
-su0dsa1 DI30] BY} ‘PAI UT SUONEIYIPOW) WeIFeIp 0| HIVAVIVA MDOTd 82ISAY ‘SHLAGINS SHV UeLRA :6'¢ omSL]

X-

AN ANNOY hhxukmwzn:u

A

934 X08s
s31A98Ns

934 22018

SNINNMTODXIN
SMOYL4IHS

+ - r AX3LINIVd

AN ANNOY

31

3. IMPLEMENTATION

Beside adding a register we also modified the controller. The modification
reflects the change in data path and emits a signal that writes the data to the
S-box register. At this point we decided to rewrite the controller from Moore
FSM to Mealy FSM. By rewriting we lowered the number of states and the
FSM has became more maintainable. The FSM is shown in Figure 3.10. The
controller contains signal COUNTER_VALUFE with type natural which is used
as a counter of rounds. Value 9 is loaded to the COUNTER_VALUEF if signal
INIT COUNTER is active. If signal DECREASE_COUNTER is active value
of the counter is decremented by 1.

In this variant, one round takes 2 clock cycles. The data are written to
BLOCK_REG register in first clock cycle, and to SBOX_REG in second clock
cycle.

3.7 AES BYTES

Writing to the S-box register was divided into multiple clock cycles in this
variant. Fach byte of the SubBytes operation is written into the S-box register
in a different clock cycle. One round takes 16 + 1 = 17 clock cycles (Writing to
BLOCK_REG takes 1 clock cycles, subsequent writing of bytes to SBOX_REG
takes 16 clock cycles.). Out motivation was to divide the operation we are
targeting into particular cycles (DPA reveals just one byte of a key at one
moment).

A new control signal SUBBYTE was added between controller and data
paths (see Figure 3.11). The signal has type natural with range from 0 to 15.
It contains the number of byte that should be written to the S-box register.

The controller was modified to support this behavior. There is a new signal
BYTE_COUNTER_VALUE which has the same type as a signal SUBBYTE.
The value is loaded to the byte counter if signal INIT BYTE_ COUNTER
is 717 1If signal DECREASE_BYTE_COUNTER is active the value of byte
counter is decreased by one. The signal BYTE COUNTER_VALUE is con-
nected to the signal SUBBYTE in AES128_BLOCK. The state diagram is
nearly the same as the one in previous variant except two modifications:

e Signal INIT_BYTE_COUNTER is active in states:

— PERFORMING_-ROUND
— WAITING if ENCRYPT is high

e Signal DECREASE_BYTE_COUNTER is active in states:

— PERFORMING_SUBBYTES

32

3.7. AES_BYTES

ENCRYPT = “0"

WAITING

ENCRYPT = “1" /

LOAD

INIT_COUNTER

COUNTER_VALUE =0/
PERFORM_BLOCK
DECREASE_COUNTER
LAST_ROUND
HAS_FINISHED

COUNTER_VALUE =0/
PERFORM_SUBBYTES
LAST_ROUND

PERFORMING_
SUBBYTES

COUNTER_VALUE =9 /
PERFORM_SUBBYTES
FIRST_ROUND

PERFORMING_
ROUND

else /
PERFORM_SUBBYTES

COUNTER_VALUE =9/
PERFORM_BLOCK
DECREASE_COUNTER
FIRST_ROUND

COUNTER_VALUE != 0 and COUNTER_VALUE !=9/
PERFORM_BLOCK
DECREASE_COUNTER

Figure 3.10: Variant AES SUBBYTES: AES128 BLOCK_CONTROLLER

state diagram

FIRST_ROUND

LAST_ROUND

PERFORM_ROUND

AES128 BLOCK_CONTROLLER

LOAD

PERFORM_SUBBYTES

SUBBYTE

Y

L

ENCRYPT HAS_FINISHED

AES128_BLOCK_DATAPATH

o

PLAINTEXT CIPHERTEXT

Figure 3.11: Variant AES BYTES: AES128 BLOCK block diagram (modi-
fications in red, each name of signal inside the entity ends by INNER, this
string was removed from the diagram because of simplicity)

33

3. IMPLEMENTATION

RS232_RXD RS232_TXD

UART_RX_INNER

»| PLAINTEXT_REG

)
PLAINTEXT_INNER
RS232 PLAINTEXT_INNER
A L
@ @ KEY
o -
2| E2| 5 2
5 = z z AES128_BLOCK |
o - - I
n.ul wl)_I ; lt—
@ -] (=] w
2 g 2 z 1
& & = 3 CIPHERTEXT_INNER
I—I l—’ g &I
S S = 2
5) 8
Y Y -
TRIGGER LOAD_CIPHERTEXT_INNER
- AES128_CONTROLLER > CIPHERTEXT _REG
SEND_NEXT_BYTE_INNER
[- 4
b
=
-
)
& HAS_FINISHED_INNER
;.
S
¥ ENCRYPT_INNER
i3 4 KEY_REG

Figure 3.12: Variant AES_KEY: AES128 block diagram (modifications in red)

3.8 AES KEY

We were worried that the hard-coded key could be optimized away by the
synthesis tool. The key was hard-coded in the top level entity in previous
implementations. We added the register for key to the top level entity (see
Figure 3.12), and modified the controller to support receiving the key over
serial line.

The format of the communication between the board and its counterpart
has changed. Instead of sending 16 bytes of plaintext there are 17 bytes. The
first byte can be seen as a control byte. Depending on the value of the first
byte the controller decides what state transition will be performed. If the byte
has the value 0x00 the controller takes the following 16 bytes as a key and
stores them to the key register. No response is sent back in this case. If the
first byte has the value OxFF the controller takes the following 16 bytes as

34

3.8. AESKEY

IS_COUNTER_ZERO = “1"

IS_COUNTER_ZERO = “0" or DATA _AVAILABLE = "0"

DATA _AVAILABLE = “1" and UART_RXD = x"AA" /
INIT_COUNTER

WAITING
FOR
KEY

DATA _AVAILABLE = “1" /
LOAD_KEY
DECREASE_COUNTER

WAITING
FOR
CONTROL
_BYTE

DATA _AVAILABLE = “1" and UART_RXD = x"FF" /
INIT_COUNTER

IS_COUNTER_ZERO = "0" /
DECREASE_COUNTER
TRIGGER

DATA _AVAILABLE="0"

' DATA _AVAILABLE="1" /
IS_COUNTER_ZERO="1" / WAITING LOAD_PLAINTEXT
SHOWI NG_ INIT_COUNTER FOR DECREASE_COUNTER
TRIGGER \PLAINTEXT

IS_COUNTER_ZERO="0"

IS_COUNTER_ZERO="1"

IS_COUNTER_ZERO = “1" /

IS_COUNTER_ZERO = “0" /
INIT_COUNTER e o,

DECREASE_COUNTER

SENDING

ENCRYPTION_FINISHED="1" /
INIT_COUNTER
LOAD_CIPHERTEXT

IS_COUNTER_ZERO = “1" /
INIT_COUNTER

TXD_READY="1"/
SEND_NEXT_BYTE

DECREASE_COUNTER
e 1S_COUNTER_ZERO="0" /

SEND_CIPHERTEXT

SENDING_
NEXT_BYTE

ENCRYPTION_FINISHED="0" /
ENCRYPT

TXD_READY="0"

Figure 3.13: Variant AES KEY: AES128 CONTROLLER state diagram

a plaintext and encrypts them. After encryption the ciphertext is sent back.
The key can be changed repeatedly and the encryption always uses current
key. This state diagram of the controller can be seen in Figure 3.13.
Application SC Power Measurement (see section 3.1) has been updated
accordingly and it sends 17 bytes instead of 16. The first byte is always
O0xFF and the key must be set outside the SC Power Measurement before the

measurement begins.

35

CHAPTER 4

Testing

This chapter describes the testing that we performed. The next paragraph
presents an overview of different kinds of tests. The section 4.1 contains a
description of verification and validation tools which we created to help us
to test hardware designs. Testing strategies and results of applications and
designs that we described in chapter 3 are presented in the section 4.2 and
section 4.3.

The tests that we performed can be divided into two groups.

Verification tests Testing in simulator or development environment. This
testing is usually conducted on a unit basis. Each unit of design is
covered by the tests separately. The simulator sends some arbitrary
input and checks the output for correctness.

Validation tests The design is deployed to the device and then tested. The
whole design is tested at once under circumstances that can occur during
deployment. Tests can be performed both manually or automatically.

We used both verification and validation testing for the entity AES128_BLOCK.
We tested all the applications, scripts, and designs by validation tests (see
Table 4.1).

Unit Verification testing | Validation testing
SC Power Measurement X v
Scripts for performing DPA X v
AES for smart card X v
AES128 BLOCK entity (FPGA) v v
FPGA design X v

Table 4.1: Overview of performed tests

37

4. 'TESTING

4.1 Testing Tools

As a part of this thesis we created different tools used for testing. The aim of
those tools is to help us with testing and make the testing more automatic.
We have created two testing applications. One is for AES128 BLOCK entity
verification and the other one is for the whole FPGA design validation. Both
are written in C# programming language.

AESGenerator It generates random data and random keys. The application
takes one argument from the command line. It is a number telling how
many blocks and keys should be generated. The generated data and
keys have size 16 bytes so they reflect block size and key size for 128 bit
AES. The application then encrypts those data by a generated random
key. Each block of data is encrypted by a different key. Generated data,
encrypted data, and keys are stored in text files one block per line. The
values are bytes in hexadecimal format separated by spaces. Those files
can be read by the testbench used in FPGA designs.

FPGATester It is an application that can communicate with FPGA. It gen-
erates random plaintext and sends it to the FPGA. Then it waits for the
response. It encrypts the generated plaintext and compares it with the
received ciphertext. The encryption key is hard-coded and must be the
same as the key used in FPGA design that is tested. If the ciphertext
is not received in specified time interval or the ciphertext is incorrect
it stops testing. Otherwise it runs indefinitely until the application is
closed. The test result can be seen in console. We used this application
for the FPGA designs validation.

4.2 Verification

We performed the verification of the entity AES128 BLOCK from FPGA
designs. We created an entity AES128_BLOCK_TB that is a testbench in-
tended to be used in the simulator. The testbench reads its input from 3
files (plaintexts, ciphertexts, and keys). Each block is on separate line in
hexadecimal text format. Those files can be generated by AESGenerator (see
section 4.1). It uses the data from input and sends them to the entity. It
waits for the result and compares it with expected result.

We performed verification testing of entity AES128_ BLOCK in each design.
We performed a behavioral simulation in Xilinx ISE development environment.
It was a pre-synthesis simulation (i.e. there was no timing information). We
used 256 different blocks and keys. All tests were successful.

38

4.3. Validation

4.3 Validation

We performed the validation of all applications. scripts, and designs that we
created. We did an automatic validation of FPGA design by the FPGATester
(see section 4.1). We performed a manual validation of the rest.

SC Power Measurement We performed a measurement on FPGA with
this application. We then plotted the first trace and visually inspec-
ted the plot. Plotted traces seemed correct. We also recovered correct
key from captured traces.

Key Recovery using DPA There are sample data in the same format as
the output of SC Power Measurement that are available at the CTU
website [14]. The key used for obtaining sample date is known.!® We
used those data and we verified that the key we received from Key
Recovery application is the same as the key from the sample data.

AES for smart card We manually sent a plaintext to the card and received
the ciphertext. We encrypted the plaintext using a third party tool [5]
and compared the ciphertext received from smart card with ciphertext
from this third party tool. We verified that both ciphertexts are same.
We repeated this test a few times. There is a very low probability
that we would get the correct ciphertext in all the attempts and the
AES implementation would be working incorrectly. Based on previous
statement we can conclude that the implementation is returning correct
results.

AES for FPGA We used the FPGATester (see section 4.1) for FPGA AES
implementation validation. We let the tool run for a few tens of minutes
and verified that all results were correct. This statistical sample was
large enough to state that the implementations are working correctly.
We performed this test for each FPGA implementation.

"The key is 0x00112233445566778899AABBCCDDEEFF.

39

CHAPTER 5

Mounting the DPA Attack on
AES Implementations

We performed various measurements with different devices (smart card and
FPGA), different implementations (see chapter 3), different methods of the
attack (see subsection 2.2.3) and different modifications of the FPGA board.
At first we performed the DPA against a smart card (results are described
in section 5.1). Then, we mounted the attack against FPGA (results are
discussed in section 5.2).

Correlation matrices are stored on the attached DVD, and can be found
in a directory measurements. The format of correlation matrix is (256, num-
ber_of-samples) where each row is one key hypothesis. The directory measure-
ments contains subdirectories reflecting each measurement. The name of the
subdirectory is same as the name used for the measurement in this chapter.
A correlation matrix was exported from Wolfram Mathematica for each meas-
urement, and it can be imported back to the Wolfram Mathematica (see List-
ing 5.1). We also included captured traces for some measurements. It was not
possible to include traces from all the measurements because the size of the
file with traces is usually several gigabytes.

Each measurement contains a plot of traces and a plot of correlation coef-
ficients of all key hypothesis. The plot of traces contains only the first trace

Listing 5.1: Wolfram Mathematica import and export of correlation matrices

(x Command used for export x)
(x+ cor is a matriz with correlation coefficients %)
Export[”correlation_matrix .mx”, cor, ”"Table”];

(x Command used for import x)
cor = Import|[”correlation_matrix.mx”, "Table”];

41

5. MOUNTING THE DPA ATTACK ON AES IMPLEMENTATIONS

T+Vdd

AVR
—|— Oscilloscope
R DC mode
1M Ohm

Figure 5.1: Measurement setup for smart card

in all the measurements, and the plot of correlation matrix contains first byte
of a key.

5.1 Smart Card

At first, we decided to mount the attack against a smart card. Our primary
aim was to verify that we are able to successfully perform the attack. We used
a special adapter for measuring smart card power consumption used in the
course MI-BHW [4]. It has a resistor placed on the GND line and pins that
can be used for connecting the oscilloscope (see Figure 5.1). We used Agi-
lent'! DSOX3012A [9] oscilloscope. We performed 150 measurements, used
Hamming weight, and mount the attack against the first round. Summar-
ization can be found in Table 5.1 We received a smart card with a secret

Attack Hamming weight and first round
Implementation Smart card
Samples per trace 550,000

Table 5.1: Measurement on smart card

key from our supervisor. It was possible to recognize each round in captured
traces (see Figure 5.2) and the attack was successful. We were able to reveal
the secret key. We encrypted randomly chosen plaintext with the obtained
key and compared it with respective ciphertext as a confirmation that the key
is correct. The correlation matrix on the attached CD contains correlation
coefficients for the last byte of the key—correct key hypothesis is 0x79.

1 The company is now called Keysight

42

5.2. FPGA

100000 200000 300000 200000 500000

Figure 5.2: Power trace. Configuration section 5.1 (smart card)

5.2 FPGA

Once we successfully broke the smart card implementation we moved to the
FPGA implementation. We performed all the measurements with Jan Severyn
who is also working on DPA in his bachelor thesis [32]. We replaced a jumper
JP7 on the board by 1Ohm resistor. We performed an initial measurement
of the implementation without any simplification (see section 3.4). We did
not obtained any usable result. Then we realized that we short-circuited the
FPGA via oscilloscope and decided to perform following changes:

e Use a differential probe Hameg HZO41 [2] to prevent a short-circuit.
e Lower clock rate in the design.

e Use the oscilloscope Agilent MSO7104A [7] because it has higher sampling
frequency (1 GHz). Later, we found out that the lower the number of
samples the better because the computation is faster.

The measurement setup is shown in Figure 5.3.

Subsequently we removed capacitors C158—C175 on the 1.2V power line
to the core as proposed by Velegalati and Yalla [34] who were exploring the
possibilities of the DPA on Spartan-3E board.

Wa faced issue with memory demands of the DPA scripts during the com-
putations. We decided to use as few samples as possible to lower the memory
consumption. We visually examined captured traces before each computation
and tried to visually locate the subset of samples where the operation took
place in. Also we were able to run the analysis with tens of thousands of traces
at most because of high memory consumption.

43

5. MOUNTING THE DPA ATTACK ON AES IMPLEMENTATIONS

9 +vdd (1.2v)
Differential Oscilloscope
[] R probe DC mode
S Hameg HZ041 50 Ohm
FPGA

Figure 5.3: Measurement setup for FPGA with differential probe

Even though we used 115,200 bauds for serial communication, the meas-
urement was considerably slow. Collecting 100,000 power traces took ap-
proximately 2hours. We found out that communication is the slowest part
of the measurement process. The communication takes a few milliseconds
whereas the encryption just a few microseconds. We propose an improvement
in chapter 6.

We used key (0x00 0x11 0x22 0x33 0x44 0x55 0x66 0x77 0x88 0x99 0xAA
0xBB 0xCC 0xDD 0xEE 0xFF) in all the measurements. Correct key hypo-
thesis for the first byte of a key is 0x00 in the case of an attack to the first
round and 0x36 in the case of an attack to the last round (0x36 is the first
byte of round key for 10" round).

Summary of all performed measurements of FPGA implementations is
provided in Table 5.2

FPGA Decoupling | Power | Measurement | Description
design capacitors supply setup in subsection
AES_CLK v switched DP 5.2.1
AES_SUBBYTES v acc DP 5.2.2
AES KEY X acc DP 5.2.3
AES_CLK X acc Preamp 5.2.4
AES_CLK X switched Preamp 5.2.5
AES_CLK v acc Preamp 5.2.6

Table 5.2: Summary of performed measurements (Decoupling capacitors: v'=
present, X= removed, Power supply: switched = switched-mode power supply,
acc = accumulators, Measurement setup: DP = differential probe, Preamp =
preamplifier)

44

5.2. FPGA

o0 [
150

100 [

PR T T [T T T PR T T PR R T PR R PR T T PR R T
10000 20000 20000 40000 50000 ©0D0ODD TOOOOD

Figure 5.4: Power trace. Configuration: subsection 5.2.1 (AES_CLK, capacit-
ors present, switched-mode power supply, differential probe)

5.2.1 AES_CLK, differential probe

This is the first measurement that we performed (except the short-circuited
one). We used the AES_CLK implementation and board with present de-
coupling capacitors and powered by switched-mode power supply. Summary
of the setup is in Table 5.3. Captured traces are shown in Figure 5.4. The
quality of the samples is not very good. Moreover there was a low frequency
wave which we attributed to the switched-mode power supply. We estimate

Environment Differential probe
Board setup No modification
Attack Hamming weight and first round
FPGA design AES_CLK
Samples per trace 200,000

Table 5.3: Measurement AES_CLK, differential probe

that the operation took place between samples 38,000 and 44,000. We can
observe a voltage growth during given period. We tried Hamming weight and
first round as an attack, but the attack was unsuccessful (see Figure 5.5).

5.2.2 AES_SUBBYTES, accumulators, differential probe

We decided to power the FPGA from accumulators. We connected the accu-
mulators to the spots on the board we identified in subsection 2.3.1. The 1.2V
line was connected to the jumper JP7, the 2.5V was connected to the jumper
JP6, and the 3.3V line can be connected to any peripheral Vcec pin. The accu-
mulators were connected through stabilizers giving us required voltages (see

45

5. MOUNTING THE DPA ATTACK ON AES IMPLEMENTATIONS

0.04

0.02

-0.02

-0.04

Figure 5.5: Traces of correlation coefficients (correct key in red), samples
38,000-44,000. Configuration: subsection 5.2.1 (AES_CLK, capacitors
present, switched-mode power supply, differential probe)

Figure 5.6). At first we connected accumulators to the stabilizers and then to
the board. We started with the lowest voltage first and then continued to the
highest voltage, always connecting GND before Vcec. Summary of the setup is
in Table 5.4.

We also decided to use the implementation with register after the SubBytes
operation. We wanted to isolate the S-box to obtain better results.

Environment Differential probe
Board setup Accumulators
Attack Hamming weight and first round
FPGA design AES_SUBBYTES
Samples per trace 2,000

Table 5.4: Measurement AES_SUBYTES, accumulators, differential probe

We decided to take 1,000 power traces. The number 1,000 is not probably
high enough to successfully get the key but we wanted to put focus on reducing
the noise, and getting better traces first. Visually the traces were better than
the traces in previous measurement, but still far away from the traces we got
in subsequent measurements. Captured traces can be seen in Figure 5.7. We
tried Hamming weight and first round attack, but it was unsuccessful (see
Figure 5.8). We decided to continue with modifications, and try to get less
noisy signal.

46

5.2. FPGA

Figure 5.6: FPGA board powered by accumulators, which are connected
through stabilizers

500 1000 1500 2000

Figure 5.7: Power trace. Configuration: subsection 5.2.2 (AES_.SUBBYTES,
capacitors present, accumulators, differential probe)

47

5. MOUNTING THE DPA ATTACK ON AES IMPLEMENTATIONS

0.15

010

0.05

-0.05

—0.10

-0.1E

Figure 5.8: Traces of correlation coefficients (correct key in red). Configur-
ation: subsection 5.2.2 (AES_SUBBYTES, capacitors present, accumulators,
differential probe)

5.2.3 AES KEY, no capacitors, accumulators, differential
probe

We decided to further modify the design and use an AES_KEY implementa-
tion (see section 3.8). To further enable viability of a DPA attack we decided
to remove decoupling capacitors from the FPGA board. We captured 10,000
power traces with 200,000 samples per trace. Samples 50,000-100,000 can be
seen in Figure 5.9. The plot contains only 50,000 samples because it is less
dense and better readable than plot with 200,000 samples. Summary of the
setup is in Table 5.5. At this point we changed the resistor from 1 Ohm

Environment Differential probe
Board setup Removed capacitors, accumulators
Attack Hamming distance and last round
FPGA design AES KEY
Samples per trace 200,000

Table 5.5: Measurement AES_SUBYTES, accumulators, differential probe

to 10 Ohms and performed the same measurement. The first trace from the
second measurement is shown in Figure 5.10. Traces captured with 10 Ohm
resistor seem clearer than traces captured with 1 Ohm resistor. We run the
analysis using Hamming distance and last round on the data obtained dur-
ing measurement with 10 Ohm resistor. Because it was hard to identify the
cycle where the last round took place in we run the computation on samples
100,000-200,000. We expect the last round took place in this time frame. As
in the previous cases, the attack was unsuccessful in this case as well. The

48

5.2. FPGA

145

140 |

135 |

130

0 10000 20000 20000 40000 50000

Figure 5.9: Power trace, samples 50,000-100,000. Configuration: subsec-
tion 5.2.3 (AES_KEY, capacitors removed, accumulators, differential probe,
1 Ohm resistor)

140 [

120 |

o 10000 20000

L L 1 L M L M
40000 50000

20000
Figure 5.10: Power trace, samples 50,000-100,000. Configuration: subsec-

tion 5.2.3 (AES_KEY, capacitors removed, accumulators, differential probe,
10 Ohm resistor)

attack revealed value 0x64, but correct value is 0x36. We were not able to
plot the correlation coefficients of key hypothesis because the plotting always
crashed because of low memory. Also, we were not able to put the correlation
matrix on the attached CD because the correlation matrix was to large.

49

5. MOUNTING THE DPA ATTACK ON AES IMPLEMENTATIONS

5.2.4 AES _CLK, no capacitors, accumulators, SMA
connector, AC preamplifier

Based on the consultation with Priv.-Doz. Dr. Amir Moradi!? we decided to
change our environment as follows:

e Use the coaxial cable with SMA connector and AC preamplifier PA 303
BNC by Langer EMV-Technik (with gain 30dB) [3] instead of differen-
tial probe

e Turn on bandwidth limit on the oscilloscope

The differential probe we were using before had an attenuation 10:1 (attenu-
ation 20 dB). We replaced the differential probe by the AC preamplifier with
gain 30dB (gain approximately 31.6:1) to obtain better traces. The measure-
ment setup is shown in Figure 5.11.

We observed during computations with Hamming distance that the cor-
rect key yields a negative correlation. This is because the higher the power
consumption, the higher the voltage drop is (i.e. the change of voltage is neg-
ative). The voltage drop can be computed as ugrop = 1.2V —i* R, where R is
a resistor used for measurement, and ¢ is the current flowing through R (see
Figure 5.12).

Dr. Moradi also told us that we did not need so many samples, and 10,000—
20,000 samples should be sufficient. We should also eliminate all the interfer-
ences during the measurement such as mobile phones.

We added a register for key in the last implementation (section 3.8) because
we were worried that the key could be optimized out. We concluded that
this was not the case and it wouldn’t be optimized out, and we decided to
use the AES_CLK (see section 3.5) implementation. We used the following
oscilloscope settings: DC mode, 50 Ohm input impedance, and bandwidth
limit turned on. The exported oscilloscope settings is shown in Listing 5.2
(we used channel 1 for measuring the consumption, and channel 2 for trigger).
Summary of the setup is in Table 5.6.

From then on we were performing all the measurements with Martin Masek
who is investigating the resistance of different designs against DPA in his
bachelor thesis.

We performed 100,000 measurements with 20,000 samples per trace. We
concluded after visual inspection that the traces are much clearer now. It is
possible to clearly see rising edge of each clock cycle (see Figure 5.13). If we
were sending the same data repeatedly we were obtaining very similar traces.

2Member of Embedded Security Group, Horst Gértz Institute for IT-Security, Faculty
of Electr. Eng. & Information Technology, Ruhr-Universitaet Bochum
13Photo was taken by Martin Magek.

50

5.2. FPGA

Figure 5.11: FPGA board powered by accumulators, which are connected
through stabilizers. The board is connected to the oscilloscope through
preamplifier.!3

o1

5. MOUNTING THE DPA ATTACK ON AES IMPLEMENTATIONS

9 +vdd (1.2v)
alk
AC lifi Oscilloscope
FPGA PICARIPIRIES DC mode
PA 303 BNC 50 Ohm
|

Figure 5.12: Measurement setup for FPGA with AC preamplifier

Listing 5.2: Oscilloscope settings, channel 1 was connected to the source of
traces, channel 2 was connected to the trigger. Configuration: subsection 5.2.4
(AES_CLK, capacitors removed, accumulators, AC preamplifier)

Anlg Ch State Units/Div Position Coupling
BW Limit Invert

Ch 1: On 360mV/ —576.00mV DC
On Off

Ch 2: On 2.00V/ 7.17400V DC
Off Off

Anlg Ch Impedance Probe

Ch 1: 50 Ohm 1.00 : 1

Ch 2: 1M Ohm 10.0 : 1

Trigger Mode Coupling Noise Rej HF Reject Holdoff
Edge Normal DC Off Off 60ns

Trigger Source Slope Level
Edge Ch 2 Rising +1.32V

Time Zoom Time Ref Main s/div Delay
Normal Off Center 1.000us/ 26.92us

Acquisition Realtime Vectors Inf Persist
Normal On On Off

52

5.2. FPGA

Environment AC preamplifier
Board setup Removed capacitors, accumulators
Attack Hamming distance and last round
FPGA design AES_CLK
Samples per trace 20,000

Table 5.6: Measurement AES_CLK, no capacitors, accumulators, AC preamp-
lifier

250+

200

150

100 [

g0 [

5000 10000 15000 20000

Figure 5.13: Power trace. Configuration: subsection 5.2.4 (AES_CLK, capa-
citors removed, accumulators, AC preamplifier)

We were able to recover correct key. The number of power traces needed
for successful key recovery was 5,000. We randomly chose a few bytes of the
key and all were successfully recovered. The correlation coefficient of cor-
rect key hypothesis was two times lower than correlation coefficients of other
key hypotheses and its value was —0.12 (see Figure 5.14). The correlation
coefficient has lowest value in sample 15,045 which is the sample where the
last round starts. We concluded from this measurement that the oscilloscope
and environment setup plays a key role in breaking the implementation. We
used the implementation without all the simplifications we made (lower clock
frequency was the only simplification we used), and we were still able to get
correct key.

We observed that using more traces changes the value of the correlation
coefficient of correct key hypothesis just slightly, but decreases variance of
correlation coefficients of incorrect key hypotheses. We run the computation
for different number of power traces and for sample 15,045. From the result,
we can conclude that 1% byte of key could be successfully revealed with 2,000
3,000 power traces (see Figure 5.15).

53

5. MOUNTING THE DPA ATTACK ON AES IMPLEMENTATIONS

=010

Figure 5.14: Traces of correlation coefficients (correct key in red), samples
10,000-17,000, 5,000 traces. Configuration: subsection 5.2.4 (AES_CLK, ca-
pacitors removed, accumulators, AC preamplifier)

Figure 5.15: Traces of correlation coefficients for different number of power
traces (correct key in red), sample 15,045. Configuration: subsection 5.2.4
(AES_CLK, capacitors removed, accumulators, AC preamplifier)

o4

5.2. FPGA

150

100

50

5000 10000 15000

Figure 5.16: Power trace. Configuration: subsection 5.2.5 (AES_CLK, capa-
citors removed, switched-mode power supply, AC preamplifier)

5.2.5 AES _CLK, no capacitors, AC preamplifier

Up to this point we were modifying the setup to be able to successfully perform
the DPA. Once we were able to successfully break the implementation we took
a backward route. We started making the configuration to more similar to
the real world one. At first we decided to power up the FPGA again from
standard switched-mode power supply rather than from accumulators. The
obtained traces were different even for the same plaintext. There was also a
low frequency wave in the traces. The trace is shown in Figure 5.16. Summary
of the setup is in Table 5.7.

Environment AC preamplifier
Board setup Removed capacitors
Attack Hamming distance and last round
FPGA design AES_CLK
Samples per trace 16,800

Table 5.7: Measurement AES_CLK, no capacitors, AC preamplifier

Oscilloscope settings were the same as in subsection 5.2.4. We performed
100,000 measurement with 16,800 samples per trace. We were able to reveal
correct key with 30,000 traces (see Figure 5.17). We were able to successfully
get other (a few randomly selected) bytes of a key, and all produced similar
plot of correlation coefficients (see Figure 5.18 for 7" byte). The correlation
coefficient was 2.5-3.5 times more different than other correlation coefficients.
The correlation coefficient for the first byte of a key was —0.05. We tried the
computation with 5,000 traces, which was enough for the measurement with

55

5. MOUNTING THE DPA ATTACK ON AES IMPLEMENTATIONS

.02

0.01

—0.01

—noz |

—0.03 F

-0.04 F

-5 F

Figure 5.17: Traces of correlation coefficients (correct key in red), samples
13,000-16,000, 30,000 traces, 1%' byte. Configuration: subsection 5.2.5
(AES_CLK, capacitors removed, switched-mode power supply, AC preamp-
lifier)

0.02

-0.02
-0

- 0.06

Figure 5.18: Traces of correlation coefficients (correct key in red), samples
13,000 - 16,000, 30,000 traces, 7" byte. Configuration: subsection 5.2.5
(AES_CLK, capacitors removed, switched-mode power supply, AC preamp-
lifier)

accumulators, but we were not able to get correct key in this measurement (see
Figure 5.19). This can lead to a conclusion that using accumulators instead
of switch-mode power supply lowers the resistance against the DPA.

5.2.6 AES CLK, accumulators, AC preamplifier

We measured a configuration with decoupling capacitors being removed, and
powered by switched-mode power supply in previous measurement. We de-

56

5.2. FPGA

0.4

0.0z

-0.02

—0.04

Figure 5.19: Traces of correlation coefficients (correct key in red, key hy-
pothesis with lowest correlation coefficient in blue), samples 13,000-16,000,
5,000 traces. Configuration: subsection 5.2.5 (AES_CLK, capacitors removed,
switched-mode power supply, AC preamplifier)

Environment AC preamplifier
Board setup Accumulators
Attack Hamming distance and last round
FPGA design AES CLK
Samples per trace 16,400

Table 5.8: Measurement AES_CLK, accumulators, AC preamplifier

cided to also measure the other combination (board with decoupling capacitors
being present, and powered by accumulators) and compare the results with
previous two measurements.

Measurement setup is in Table 5.8. We used the same oscilloscope settings
and implementation (AES_CLK) as in subsection 5.2.4, and performed 93,715
measurements with 16,400 samples per trace. Visually the traces are not as
clean as the traces captured during measurement without capacitors. The
traces can be seen in Figure 5.20. We were able to get the correct key with
30,000 traces (see Figure 5.21). The correlation coefficient has value —0.03,
and the margin among correct key correlation coefficient and incorrect key
hypotheses correlation coefficients is very small (smaller than margin in pre-
vious two measurements). We were not able to recover the correct key with
5,000 traces, and the correlation coefficient looks like a white noise in this case
(see Figure 5.22). We can conclude that the figures are worse than figures in
previous two measurements, and that using capacitors increases the resistance
against the DPA. Correlation coefficient traces of correct key hypothesis were
different from others in setup with decoupling capacitors being removed, and
there was also a huge spike around the sample where the operation took place

o7

5. MOUNTING THE DPA ATTACK ON AES IMPLEMENTATIONS

150 [

100 |

5000 10 000 15000

Figure 5.20: Power trace. Configuration: subsection 5.2.6 (AES_CLK, capa-
citors present, accumulators, AC preamplifier)

-0.03

Figure 5.21: Traces of correlation coefficients (correct key in red), samples
13,000-16,000, 30,000 traces. Configuration: subsection 5.2.6 (AES_CLK,
capacitors present, accumulators, AC preamplifier)

in. This spike was not present in correlation coefficient traces in setup with
decoupling capacitors being present.

5.3 Summary

We performed the DPA with different implementations, board modifications,
oscilloscope setups, and different methods of the attack. We discovered that
the successful attack is mostly determined by the oscilloscope setup, the board
setup, and the methods of the attack. The implementation has low impact

58

5.3. Summary

0.06
0.4 B

0.02

-0.02

-0.04

- 0.06

Figure 5.22: Traces of correlation coefficients (correct key in red, key hy-
pothesis with lowest correlation coefficient in blue), samples 10,000-16,000,
5,000 traces. Configuration: subsection 5.2.6 (AES_CLK, capacitors present,
accumulators, AC preamplifier)

on the success of the DPA. The most important aspect of the implementation
is the clock frequency. We had better success with Hamming distance and
attack to the last round than Hamming weight and attack to the first round.
We also had better success with AC preamplifier (with gain 30dB, i.e. about
31.6:1)instead of differential probe, and the bandwidth limit turned on. It
is not necessary to use high sampling frequency (10,000-20,000 samples per
trace is enough) because it slows down the computation and increases memory
consumption of the DPA scripts. We also found out that using resistor with
higher resistance gives us clearer traces.

With proper oscilloscope setup (described in subsection 5.2.4) we were able
to break the implementation without any simplification (except lower clock
frequency). We broke three different board setups (see Table 5.9). The board

Setup Necessary #traces
Accumulators and removed capacitors 5,000
Removed capacitors 30,000
Accumulators 30,000

Table 5.9: DPA summary

with removed capacitors powered by accumulators was the easiest to break,
and we needed only 5,000 traces to find the correct key. For breaking the
board powered by switched-mode power supply, and with removed capacitors
we needed 30,000 traces for successful breaking. We needed 30,000 traces for
successful breaking of the board with capacitors powered by accumulators as
well. The margin between correct key correlation coefficient, and incorrect key

59

5. MOUNTING THE DPA ATTACK ON AES IMPLEMENTATIONS

hypotheses correlation coefficients was higher in the case of a board without
capacitors powered by switched-mode power supply than in the case of a
board with capacitors powered by accumulators. Both removing capacitors,
and using accumulators lowers the resistance against DPA. It seems from
the results that removing capacitors lowers the resistance more than using
accumulators.

60

CHAPTER 6

Future Work

In this chapter we propose ideas for future work and research that could be
conducted. Those ideas mostly regard continuation in research of DPA against
FPGA and ways how to make the key recovery and measurement process more
efficient.

Impact of fault-tolerant designs to the DPA resistance

Fault-tolerance means a resistance against threats from physical and natural
factors. Fault-tolerant systems should be resistant against those factors but
they don’t need to be necessarily resistant against intentional human attack.
Basic fault-tolerance can be achieved by using some kind of redundancy such
as TMR or Duplex.

Because fault-tolerant systems usually use redundant items, their secur-
ity'4 can be lowered. This can have impact on a resistance against intentional
attacks such as side channel attacks. Some investigation in this field has
already been done [22]. The authors provided a summary of the topic but did
not performed any actual comparison of the resistance of different designs. Fu-
ture work could involve the comparison of the resistance in terms of number
of measurements.

Efficient computation of correlation coefficient

The application for recovering the key, which we used (see section 3.2), has
very high memory consumption and the computation is slow. Different tech-
niques of efficient computation of the correlation coefficient exist [13]. The
key recovery application could be changed to employ some of these techniques.
This change would allow us to use much more traces.

1 Security means the resistance against intentional attacks

61

6. FUTURE WORK

Faster measurement

We have found out that performing 100,000 measurements takes approxim-
ately 2 hours with 115,200 baud serial line. We have also found out that
the serial communication with FPGA is the slowest part of the measurement
process.

It is possible to partially eliminate the communication. Both the meas-
urement application and the encryption device would use a pseudo-random
number generator (PRNG) or a linear-feedback shift register (LFSR). The
seed for PRNG or the initial value of the LFSR would be generated before
the measurement begins by one party and sent to the other party. Instead
of sending each plaintext to the cryptographic device, the device could get
next plaintext from PRNG or LFSR. In setup we used during measurements,
the device sends all the ciphertexts back. It is necessary to have plaintext or
ciphertext for each trace to successfully break the implementation [27]. But
we can get all the ciphertexts even if the device won’t send them back. Be-
cause the initial seed is known to both parties we can generate exactly same
plaintexts and encrypt them. The cryptographic device can send back just
each 2" trace as a confirmation that it is functioning properly. This modific-
ation would considerably decrease the serial line traffic and increase the speed
of measurement.

Getting more traces

State-of-the-art research uses hundreds of millions of traces [23, 10]. The
maximum number of traces we got was 100,000. We were limited mostly by
inefficient key recovery application that was not constant in memory com-
plexity with respect to the number of traces, and the slowness of measure-
ment process. We proposed ways how to make the key recovery and memory
consumption more efficient in previous sections of this chapter. With these
changes we could be able to capture and use in our computations more traces.
Then we could attempt to break the implementations that we weren’t able to
break with 100,000 traces.

62

Conclusion

We explored the possibilities of the application of the DPA to the FPGA
implementation of cryptographic system. We were attacking the implementa-
tions of AES encryption algorithm on a smart card and a Spartan 3E Starter
Board.

We modified the application SC Power Measurement used for measuring
the power consumption at FIT CTU, and we added a support for serial com-
munication (the application was originally used only for attacks on smart
cards). We created scripts for performing the DPA. We created two scripts,
one using Hamming weight and attacking the first round of the encryption
algorithm, and the other one using Hamming distance and attacking the last
round of the encryption algorithm. The scripts did not have a constant
memory complexity with respect to the number of traces which made im-
possible to do a computations with thousands of traces.

We created AES implementations for smart card, and various AES imple-
mentations for FPGA. We decided to use the iterative design for the FPGA.
Then, we modified the design several times to make it easier to break. We
lowered frequency, divided the operation into multiple clock cycles and exper-
imented with replacing the hard-coded key by a dedicated key register. All
these designs were properly tested.

We performed DPA attacks against created implementations. We exper-
imented with different board modifications (power either by switched-mode
power supply or accumulators; with decoupling capacitors either present or
removed), and with different oscilloscope settings. We found out that the
oscilloscope setup had substantial impact on our ability to break the imple-
mentation. The FPGA design has lower impact on the ability to break the
implementation. We were able to successfully break the design without nearly
all the modifications we made. The attack was not successful with a differen-
tial probe, but it was successful with an AC preamplifier (with gain 30dB),
and an oscilloscope bandwidth limit turned on. The clock rate of the design in
successful attack was 1,562.5 kHz. We were also observing better traces with

63

CONCLUSION

10 Ohm resistor than with 1 Ohm resistor.

We used two different methods of the attack. We used the Hamming
weight and attacked the first round, and we used the Hamming distance and
attacked the last round. The Hamming weight and first round attack was
successful against a smart card. The Hamming distance and last round attack
was successful against an FPGA chip.

Having proper oscilloscope settings we were able to break an FPGA im-
plementation with different modifications of the board. We observed that the
correlation coefficient is negative for the correct key hypothesis. We attrib-
uted this observation to the fact the we measure a voltage drop instead of a
current. We needed 5,000 traces to break the implementation on a board with
removed capacitors and powered by accumulators. We needed 30,000 traces
to break the implementation on a board with removed capacitors and power
by a switched-mode power supply. We were not able to break this imple-
mentation with 5,000 traces. We observed that the correlation coefficients of
incorrect key hypotheses tends to have lower variance with growing number of
traces. We needed 30,000 traces to break the implementation on a board with
present capacitors and powered by accumulators. The margin between cor-
relation coefficient of correct key and correlation coefficients of incorrect key
hypotheses was smaller than the margin on a board with removed capacitors
powered by a switched-mode power supply.

Based on the findings we can conclude that both removing capacitors and
replacing a switched-mode power supply by accumulators decrease a resistance
against the DPA. Removing capacitors seems to decrease the resistance more
than using accumulators instead of switched-mode power supply.

We were facing the issues with high memory consumption during the DPA
computations, and the issues with very slow measurements. We proposed
solutions to both of these issues. The slow measurement was mostly caused
by the communication between the board and the computer which we were
performing measurement on. We proposed a way of partial elimination of the
communication between the board and the computer.

64

[9]

Bibliography

BI-PNO course support material. [cit. 2016-12-05].
URL https://edux.fit.cvut.cz/courses/BI-PNO/

Hameg probes datasheet. [cit. 2017-01-07].
URL http://www.farnell.com/datasheets/1806004.pdf

Langer EMV-Technik PA 303 BNC preamplifier. [cit. 2017-01-08].
URL https://www.langer-emv.de/en/product/preamplifier/37/pa-
303-bnc-set-preamplifier-100-khz-up-to-3-ghz/519

MI-BHW course support material. [cit. 2016-12-04].
URL https://edux.fit.cvut.cz/courses/MI-BHW/

Online Domain Tools. [cit. 2016-09-15].
URL http://aes.online-domain-tools.com/

Spartan-3E Starter Kit Board User Guide, 2009. [cit. 2016-11-21].
URL https://reference.digilentinc.com/_media/s3e:s3estarter_
ug.pdf

Agilent Technologies InfiniiVision 7000A Series Oscilloscopes. USA,
2012. [cit. 2016-12-29].

URL http://literature.cdn.keysight.com/litweb/pdf/5989-
7736EN.pdf?id=1373609

Basys 2 FPGA Board Reference Manaual, 2016. [cit. 2016-11-21].
URL https://reference.digilentinc.com/_media/basys2:
basys2_rm.pdf

Keysight Technologies InfiniiVision 3000 X-Series Oscilloscopes. USA,
2016. [cit. 2016-12-29].

URL http://literature.cdn.keysight.com/litweb/pdf/5990-
6619EN.pdf?1d=2002858

65

BIBLIOGRAPHY

[10]

[11]

[13]

[14]

[15]

66

BILGIN, Begiil, GIERLICHS, Benedikt, NIKOVA, Svetla, NIKOV, Ventzis-
lav, and RIJMEN, Vincent. Higher-Order Threshold Implementations.
In Palash Sarkar and Tetsu Iwata, editors, Advances in Cryptology —
ASTACRYPT 2014, pp. 326-343. Berlin, Heidelberg: Springer Berlin
Heidelberg, 2014. ISBN 978-3-662-45608-8. doi:10.1007/978-3-662-45608-
8_18.

BIRYUKOV, Alex, DUNKELMAN, Orr, KELLER, Nathan, KHOVRATOVICH,
Dmitry, and SHAMIR, Adi. Key Recovery Attacks of Practical Complexity
on AES Variants With Up To 10 Rounds. Cryptology ePrint Archive,
Report 2009/374, 2009. [cit. 2016-10-08].
URL http://eprint.iacr.org/2009/374

BIRYUKOV, Alex and KHOVRATOVICH, Dmitry. Related-key Cryptana-
lysis of the Full AES-192 and AES-256. Cryptology ePrint Archive, Re-
port 2009/317, 2009. [cit. 2016-10-08].

URL http://eprint.iacr.org/2009/317

BoTTINELLI, Paul and Bos, Joppe W. Computational Aspects of Cor-
relation Power Analysis. Cryptology ePrint Archive, Report 2015/260,
2015. [cit. 2016-12-04].

URL http://eprint.iacr.org/2015/260

BUCEK, Jiff, NOvOTNY, Martin, and STEPANEK, Filip. Practical Session:
Differential Power Analysis for Beginners, 2014. [cit. 2016-12-02].
URL https://rozvoj.fit.cvut.cz/Main/Lisbon

CappY, Tom. Differential Power Analysis. In Henk C. A. van Tilborg,
editor, Encyclopedia of Cryptography and Security, pp. 152-154. Springer
US, 2005. ISBN 978-0-387-23483-0.

CURTIN, Matt. Brute force : Cracking the data encryption standard.
New York: Springer/Copernicus Books, 2005. ISBN 0-387-20109-2.

DAEMEN, Joan and RIJMEN, Vincent. The design of Rijndael:AES -
The Advanced Encryption Standard. Berlin Heidelberg: Springer-Verlag,
2002. ISBN 978-3-662-04722-4.

KOCHER, Paul, JAFFE, Joshua, and JUN, Benjamin. Differential Power
Analysis. In Michael Wiener, editor, Advances in Cryptology — CRYPTO
'99, pp- 388-397. Springer Berlin Heidelberg. ISBN 978-3-540-48405-9.

KOCHER, Paul, JAFFE, Joshua, JUN, Benjamin, and ROHATGI, Pankaj.
Introduction to differential power analysis. 1:5-27. ISSN 2190-8516.

Bibliography

[20]

[21]

[22]

[23]

[24]

KUMAR, Sandeep, PAAR, Christof, PELZL, Jan, PFEIFFER, Gerd, and
SCHIMMLER, Manfred. Breaking Ciphers with COPACOBANA — A Cost-
Optimized Parallel Code Breaker. In Mitsuru Matsui Louis Goubin, ed-
itor, Cryptographic Hardware and Embedded Systems — CHES 2006.
Springer-Verlag, 2006. ISBN 3-540-46559-6.

MANGARD, Stefan, OSWALD, Elisabeth, and Poprp, Thomas. Power Ana-
lysis Attacks: Revealing the Secrets of Smart Cards. New York: Springer
US, 2007. ISBN 0-387-38162-7.

MISKOVSKY, Vojtéch, KUBATOVA, Hana, and NOVOTNY, Martin. Influ-
ence of fault-tolerant design methods on differential power analysis res-
istance of AES cipher: Methodics and challenges. In 2016 5th Medi-
terranean Conference on Embedded Computing (MECO), pp. 14-17. In-
stitute of Electrical and Electronics Engineers, 2016. ISBN 978-1-5090-
2221-2. doi:10.1109/MECO.2016.7525685.

MORADI, Amir, POSCHMANN, Axel, LING, San, PAAR, Christof, and
WaNG, Huaxiong. Pushing the Limits: A Very Compact and a Threshold
Implementation of AES. In Kenneth G. Paterson, editor, Advances
in Cryptology — EUROCRYPT 2011, pp. 69-88. Berlin, Heidelberg;:
Springer Berlin Heidelberg, 2011. ISBN 978-3-642-20465-4. doi:10.1007/
978-3-642-20465-4 6.

NATIONAL INSTITUTE OF STANDARDS AND TECHNOLOGY. Announcing
development of a Federal Information Processing Standard for Advanced
Encryption Standard [online], 1997. [cit. 2016-10-08].

URL http://csrc.nist.gov/archive/aes/pre-roundi/aes_9701.txt

NATIONAL INSTITUTE OF STANDARDS AND TECHNOLOGY. Announcing
request for candidate algorithm nominations for the Advanced Encryption
Standard (AES) [online|, 1997. [cit. 2016-10-08].

URL http://csrc.nist.gov/archive/aes/pre-roundl/aes_9709.htm

NATIONAL INSTITUTE OF STANDARDS AND TECHNOLOGY. FIPS PUB
197: Advanced Encryption Standard (AES). Gaithersburg: National
Institute of Standards and Technology, 2001.

PaaR, Christof. Implementation of Cryptographic Schemes 1. Ruhr Uni-
versity Bochum, 2015.

PAAR, Christof and PELzL, Jan. Understanding Cryptogtaphy. Berlin
Heidelberg: Springer-Verlag, 2010, 2nd corrected printing ed. ISBN 978-
3-642-04101-3.

PATTERSON, David A. and HENNESSY, John L. Computer Organization
and Design. Oxford: Elsevier/Morgan Kaufmann, 2013, 5th ed. ISBN
978-0-12-407726-3.

67

BIBLIOGRAPHY

[30]

[31]

[32]

[33]

[34]

68

PrOUFF, Emmanuel. DPA Attacks and S-Boxes. In Henri Gilbert
and Helena Handschuh, editors, Fast Software Encryption, pp. 424-441.
Springer Berlin Heidelberg, 2005. ISBN 978-3-540-31669-5.

SCIENGINES. Break DES in less than a single day [online], 2008. [cit.
2016-10-08].

URL http://www.sciengines.com/company/news-a-events/74-des-
in-1-day.html

SEVERYN, Jan. U'toky postrannimi kandly na implementace krypto-
grafickych algoritmt. Praha: Ceské vysoké uceni technické v Praze,
Fakulta informacnich technologii, 2016. Bakalarska prace.

TriuLicH, Stefan and HERBST, Christoph. Attacking State-of-the-Art Soft-
ware Countermeasures—A Case Study for AES. In Elisabeth Oswald and
Pankaj Rohatgi, editors, Cryptographic Hardware and Embedded Sys-
tems — CHES 2008, pp. 228—-243. Springer Berlin Heidelberg, 2008. ISBN
978-3-540-85053-3.

VELECGALATI, Rajesh and YALLA, Panasayya SV V K. Differential Power
Analysis Attack on FPGA Implementation of AES. [cit. 2016-12-29).
URL https://cryptography.gmu.edu/team/download.php?docid=2082

APPENDIX A

Acronyms

AES Advanced Encryption Standard.
APDU application protocol data unit.

API application programming interface.
CTU Czech Technical University.

DES Data Encryption Standard.

DPA Differential Power Analysis.

FIPS Federal Information Processing Standards.
FIT Faculty of Information Technology.
FPGA Field Programmable Gate Array.

FSM finite state machine.

LFSR linear-feedback shift register.

MCU microcontroller unit.

NIST National Institute of Standards and Technology.
PRNG pseudo-random number generator.

UART universal asynchronous receiver/transmitter.

VHDL VHSIC Hardware Description Language.

69

APPENDIX B

Contents of Enclosed DVDs

DVD 1
bitstreams................... the directory with AES FPGA bitstreams
| measurements..... the directory with data obtained during measurement
| aes_clk_accumulators_preamplifier
| aes_key no_capacitors_accumulators_differential probe
| _aes_subbytes_accumulators_differential probe
= o o source codes
| aeS fPEa. et source codes of AES FPGA designs
| _aes_smart_card..... source codes of AES smart card implementation
I o Y oo T oy DPA scripts
| _sc_power measurement....... source codes of SC Power Measurement
16 bytes...coovvviiiininn. variant sending 16 bytes of plaintext
17 _bytes_with control_byte..variant prepending data with OxFF
| testing tools.............iiiiiiin, source codes of testing tools
oY= v PP the thesis text directory
S o PP the thesis source codes
| _thesis.pdf.......ccoiiiiiiiiiiia.... the thesis text in PDF format
| _readme.tXtiiiiiiiiiaia.. the file with DVD contents description
DVD 2
measurements..... the directory with data obtained during measurement

aes_clk_differential probe
aes_clk no_capacitors_accumulators_preamplifier
aes_clk no_capacitors_preamplifier
readme.tXt ...ovviiiiiniinia.. the file with DVD contents description

71

